
Ari Biswas + Graham Cormode
1

Differential Privacy In Times
Of Adversity

Motivation

• A survey on sensitive topics where
an estimate of the right answer is
good enough.

• Each participant selects one out of
M choices

• Let represent the ’th persons
data

• Want to know the average number
of YES values in each category

xi i

Binary Choice : xi ∈ {0,1}

 choices: M xi ∈ {1,2,…, M}

0 1 0 0

1 2 3 4

Question: what is the highest grade of felony you have been
convicted of?

Question: have you ever cheated on an exam ?

2

Ideal solution

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data

Plain text
reports Aggregator

n

∑
i=1

xi

Output

Secure point to point channels

3

Notations and Assumptions

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data Plain text reports Aggregator

n

∑
i=1

xi

Output

Deviates from prescribed protocol
arbitrarily: Active Adversary

Follow all prescribed protocols
but try and learn as much
additional information from
protocol transcript:
Passive Adversary/Honest but
curious/ Semi honest

Will always assume secure point to point and broadcast channels.

4

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data

Plain text
reports Aggregator

n

∑
i=1

xi

Output

Adversary controls users n − 1

n−1

∑
i=1

xi−

xn=

5

Differential Privacy

An algorithm satisfies differentially private if for every two neighbouring datasets
 and for every query we have

 ,

M : (Xn × Q) → Z (ϵ, δ)
x ∼ x′￼ ∈ Xn q ∈ Q

∀T ⊆ Z ℙ[M(x, q) ∈ T] ≤ eϵ ℙ[M(x′￼, q) ∈ T] + δ

M(q(x)) 3 2 21 1

3 2 21 1M(q(x′￼))

I can’t tell if user even
participated.

n

n

∑
i=1

xi

n

∑
i=1

xi +

+

Random Noise blanket

6

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 + Lap(
1
ϵ

)A(x1, …, xn)

User
Data

Plain text
reports Aggregator

z

Output

Laplace Mechanism
This is the gold standard

 f = ∑
i=1

xi

̂f =
n

∑
i=1

xi + Lap(
1
ϵ

)

Central error | ̂f − f | ≤ O(
1
ϵ

)

7

What If I cannot trust the curator ?

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 + Lap(
1
ϵ

)A(x1, …, xn)

User
Data

Plain text
reports Aggregator

z

Output

8

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local
randomiser

Reports/
messages Aggregator

z

Output

Local Differential Privacy: Noisify at the other end

When not mentioned specifically we assume |xi | = |yi |

9

Local Differential Privacy

An algorithm satisfies local differential privacy if for every two users
 ,

R : X → Y (ϵ, δ) x, x′￼ ∈ X
∀T ⊆ Y ℙ[R(x) ∈ T] ≤ eϵ ℙ[R(x′￼) ∈ T] + δ

M(R(x)) 1 1 0 1

1 1 0 1M(R(x′￼))

I can’t tell one
output from

another
10

Randomised Response: A way to get local DP

Let p ∈ (0,1/2)

yi =
xi with pr. 1

2 + p

1 − xi with pr. 1
2 − p

LDP error | ̂f − f | ≤ O(
n

ϵ
)

 What we want to estimate

 What we estimate

(In expectation they are the same)

f = ∑
i=1

xi

̂f =
n

∑
i=1

[1
2p

(yi − 1/2 + p)]
𝔼[̂f] = f

Central error | ̂f − f | ≤ O(
1
ϵ

)

Unavoidable

Randomised Response is optimal in LDP

Duchi, Jordan, and Wainwright, ‘Local Privacy, Data Processing Inequalities, and Statistical
Minimax Rates’.

If you can attack Randomised Response, you can attack all LDP
algorithms

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Comparison is unfair — LDP imposes stricter privacy constraints

Each user has to generate enough to noise to hide himself as opposed
to each user has to generate enough noise to hide amongst the crowd.

11

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local
randomiser

Reports/
messages Aggregator Output

Shuffle Privacy

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

Randomised Response gives near central
error

Balle et al., ‘The Privacy Blanket of the Shuffle

If we do not restrict we can do just
as well as central
Balcer and Cheu, ‘Separating Local & Shuffled
Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do just
as well as central
Ghazi et al., ‘Differentially Private Aggregation in
the Shuffle Model’.

|x | = |y |

12

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local
randomiser

Reports/
messages Aggregator Output

Shuffle Privacy

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

Randomised Response gives near central
error

Balle et al., ‘The Privacy Blanket of the Shuffle

If we do not restrict we can do just
as well as central
Balcer and Cheu, ‘Separating Local & Shuffled
Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do just
as well as central
Ghazi et al., ‘Differentially Private Aggregation in
the Shuffle Model’.

|x | = |y |

13

Rich history of research and improvements but all this work has been done under the semi honest model.

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local
randomiser

Reports/
messages Aggregator

z

Output

What happens when the curious become dishonest?

Derive bounds for how many users have to be corrupted for randomised

response utility to be indistinguishable from

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Bin(n,
1
2

)

14

The aggregator could just output garbage

Relax the ideal world to allow for more curators

Don’t have enough money to corrupt all
 curators. Let’s hope that

as long as at least 1 server is semi
honest we will be fine

K

 + Lap(
1
ϵ

)A1(x1, …, xn)

 AggregatorsK

z

Output

 + Lap(
1
ϵ

)Ak(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

 + Lap(
1
ϵ

)A(x1, …, xn)

x1

xi

xn

x1

xi

xn

…

…
AnalyserA(x1, …, xn)

U Plain Aggre

n

∑
i=1

xi

Outpu

What does it mean to be fine ?

15

What we consider to be fine*

• Perfect Privacy of inputs + Differential privacy +
Output is meaningful

• Perfect Privacy of inputs + Differential privacy +
Output is not guaranteed to be meaningful

• Computational privacy of inputs + differential privacy
+ output is “guaranteed”to be meaningful
• If an adversary violates any of this, the honest

server detects this and tells everyone that they
cheated and voids the protocol.

* Fine is determined by assumptions
that curators and only guaranteed
that 1 server is semi honest

K

Not possible
Ben Or, Goldwasser and Widgerson, ‘Completeness theorems for non
cryptographic fault tolerant distributed computation’

Poplar: The focus is on lightweight protocols and the
emphasis is on privacy
Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

Our work: Lightweight-ish but focus on realiability

16

Linear Secret Sharing
Informal defintion

• Two algorithms share and
reconstruct s.t

• Share() = such that
 for and

• Reconstruct() =

s ∈ ℤq

s [s]1, …, [s]K
[s]i

R ℤq i ∈ [K − 1]

[s]K = s −
K−1

∑
i=1

[s]i

[s]1, …, [s]KK

∑
i=1

[s]i = s

Adversary in possession of shares learns no Shannon
information about

K − 1
s

Example in and

Secret

ℤ11 K = 3

s = 7

[s]1 = 4
[s]2 = 5
[s]3 = 9

3

∑
i=1

[s]i = (4 + 5 + 9) mod 11 = 7

17

User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

PRIO

 Ak(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

Correctness:
n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

18

User 1 x1 [x1]1

User
Data

Encrypted
shares AggregatorsK

z

Output

Ballot stuffing

 Ak(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

10 0 -2 0

A1(x1, …, xn)

19

Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

20

Sketching protocol from work in 2016 on function secret sharing

Boyle, Gilboa, and Ishai, ‘Function Secret Sharing’.

Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

21

INTUITION:

We will create a random degree two polynomial. If
sampled is not a root, then the only way to 0 out this
polynomial is to have a single non zero entry equal to 1

The cheating client does not know the values of thus with

probability fails to pass to the test

p(⃗r)
⃗r

⃗r

2
q

Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

2. Server k broadcasts and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

22

Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

3. Server k broadcasts and

4. Each server computes and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

23

Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

3. Server k broadcasts and

4. Each server computes and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

Check: z2 − z * = 0

z3

z*3

24

User 1 x1 [x1]1 + + Targeted noiseA1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

K-1 corrupt servers

 + Targeted noiseAk(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

User n

Is sketching still secure ?
25

Sliding Attack on honest client

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

Check: z2 − z * = 0

Adds +1 at some index and subtracts -1

0 1 0 0x =

26

Leaks 1 bit of information.

Malicious Sketching

κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Show that the protocol is zero knowledge and a dishonest server does not
learn any new information

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

The secrecy of prevents a sliding attack.
We are abstracting details of implementation: In reality the client also has to supply beaver triples or
Shares of

κ

κ

27

κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Collusions break Sketching protocols

Corrupt client has an illegal input, wants to be included in the protocol.

Just tells the corrupt servers what they sent to honest server 1

28

κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Collusions break Sketching protocols

Corrupt client has an illegal input, wants to be included in the protocol.

Just tells the corrupt servers what they sent to honest server 1

z2 z*2

z3

z*3

Set
z1 + z2 = − z1
z*1 + z*2 = − z*1
z**1 + z**2 = − z**1

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

29

Our contribution

• We want the same trust model as PRIO/
POPLAR

• We want central privacy error guarantees
• If any party deviates from the protocol,

the honest party can detect it as such
and prove it to a court of law that this
party deviated from the protocol.

• Thus the output of the our protocol is either
ABORT or valid

• This comes at the cost of 1-bit leak of
information and some lightweight public key
cryptography

Formalised as Covert Security

Aumann and Lindell, ‘Security Against Covert
Adversaries’.

30

Contributions

31

Pederson Commitments

• Let be a sub group of with order where and are large
primes such that

• We have a secret and we want to commit to it. Then a
Peterson commitment to is given by
where and are randomly selected generators for

• Given , a computationally unbounded adversary cannot infer
any information about (Perfectly Hiding)

• Given , if adversary that can find such that
, then can solve the DLOG attack

game (Computationally Binding)

𝔾q ℤ*p q p q
q |p − 1
s ∈ ℤq

s c = Com(s, t) = gsht

t R ℤq g, h 𝔾q

c 𝒜
s

c 𝒜 (s′￼, t′￼) ≠ (s, t)
Com(s, t) = Com(s′￼, t′￼) 𝒜

32

Discrete Log Attack Game

Adversary Challenger

1. Pick compute x R ℤq y = gx

2. Send to adversaryg, y

3. Adversary guesses ̂x

Advantage(𝒜, 𝔾q) := Pr[̂x = x]

We do not know any PPT algorithm that has non negligible advantage in
guessing for large enough .x q

33

Linearity trick — very useful

• Given and
, then

•

• Addition in secret space is
multiplication in commitment space

c1 = Com(s1, t1)
c2 = Com(s2, t2)
c1c2 = Com(s1 + s2, t1 + t2)

34

Committed Input sharing

User 1 x1 [x1]1, t11

n

∑
i=1

[xi]1,
n

∑
i=1

ti1

User
Data

Encrypted
shares AggregatorsK

z

Output

n

∑
i=1

[xi]K,
n

∑
i=1

tiK[x1]K, t1K

 for all Com([xi]k, tik) i ∈ [n], k ∈ [k]

Public board for everyone to see

35

Distributed and verifiable noise generation

• Key idea if the algorithm is linear —
then we will use commitments to our
advantage and not allow the corrupt
parties to deviate

• Binomial noise can be generated
using a distributed and linear
protocol.

36

See Dwork et al., ‘Our Data, Ourselves’.

Binomial Mechanism

• Given a bit from any
arbitrary distribution

• And given

• is guaranteed to be

• Use this along with commitments to
get what what we want

bi ∈ {0,1}

ci ∼ Bernoulli(1/2)
zi = ci ⊕ bi
zi ∼ Bernoulli(1/2)

37

Future work

• Can we lose that 1 bit leakage?
• Non linear protocols — could we

leverage non-malleable codes for
secret sharing ?

• Can we add bias to the noise
sampler ?

38

