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Differential Privacy In Times 
Of Adversity 



Motivation

• A survey on sensitive topics where 
an estimate of the right answer is 
good enough.

• Each participant selects one out of 
M choices

• Let  represent the ’th persons 
data

• Want to know the average number 
of YES values in each category 

xi i

Binary Choice : xi ∈ {0,1}

 choices: M xi ∈ {1,2,…, M}

0 1 0 0

1 2 3 4

Question: what is the highest grade of felony you have been 
convicted of?

Question: have you ever cheated on an exam ?
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Ideal solution

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data

Plain text 
reports Aggregator

n

∑
i=1

xi

Output

Secure point to point channels
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Notations and Assumptions

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data Plain text reports Aggregator

n

∑
i=1

xi

Output

Deviates from prescribed protocol 
arbitrarily: Active Adversary

Follow all prescribed protocols 
but try and learn as much 
additional information from 
protocol transcript:  
Passive Adversary/Honest but 
curious/ Semi honest

Will always assume secure point to point and broadcast channels.
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User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data

Plain text 
reports Aggregator

n

∑
i=1

xi

Output

Adversary controls users n − 1

n−1

∑
i=1

xi−

xn=
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Differential Privacy

An algorithm  satisfies  differentially private if for every two neighbouring datasets 
 and  for every query  we have

 ,   

M : (Xn × Q) → Z (ϵ, δ)
x ∼ x′￼ ∈ Xn q ∈ Q

∀T ⊆ Z ℙ[M(x, q) ∈ T] ≤ eϵ ℙ[M(x′￼, q) ∈ T] + δ

M(q(x)) 3 2 21 1

3 2 21 1M(q(x′￼))

I can’t tell if user  even 
participated.

n

n

∑
i=1

xi

n

∑
i=1

xi +

+

Random Noise blanket
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User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

                 + Lap(
1
ϵ

)A(x1, …, xn)

User
Data

Plain text 
reports Aggregator

z

Output

Laplace Mechanism
This is the gold standard

 f = ∑
i=1

xi

̂f =
n

∑
i=1

xi + Lap(
1
ϵ

)

Central error      | ̂f − f | ≤ O(
1
ϵ

)
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What If I cannot trust the curator ?

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

                 + Lap(
1
ϵ

)A(x1, …, xn)

User
Data

Plain text 
reports Aggregator

z

Output
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User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local 
randomiser

Reports/
messages Aggregator

z

Output

Local Differential Privacy:  Noisify at the other end

When not mentioned specifically we assume |xi | = |yi |
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Local Differential Privacy

An algorithm  satisfies  local differential privacy if for every two users 
 ,   

R : X → Y (ϵ, δ) x, x′￼ ∈ X
∀T ⊆ Y ℙ[R(x) ∈ T] ≤ eϵ ℙ[R(x′￼) ∈ T] + δ

M(R(x)) 1 1 0 1

1 1 0 1M(R(x′￼))

I can’t tell one 
output from 

another
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Randomised Response: A way to get local DP

Let p ∈ (0,1/2)

yi =
xi  with pr.  1

2 + p

1 − xi  with pr.  1
2 − p

LDP error            | ̂f − f | ≤ O(
n

ϵ
)

  What we want to estimate 

 What we estimate

 

(In expectation they are the same)

f = ∑
i=1

xi

̂f =
n

∑
i=1

[ 1
2p

(yi − 1/2 + p)]
𝔼[ ̂f ] = f

Central error      | ̂f − f | ≤ O(
1
ϵ

)

Unavoidable 

Randomised Response is optimal in LDP

Duchi, Jordan, and Wainwright, ‘Local Privacy, Data Processing Inequalities, and Statistical 
Minimax Rates’.

If you can attack Randomised Response, you can attack all LDP 
algorithms

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Comparison is unfair — LDP imposes stricter privacy constraints

Each user has to generate enough to noise to hide himself as opposed 
to each user has to generate enough noise to hide amongst the crowd.
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User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local 
randomiser

Reports/
messages Aggregator Output

Shuffle Privacy

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

Randomised Response gives near central 
error

Balle et al., ‘The Privacy Blanket of the Shuffle 

If we do not restrict we can do just 
as well as central
Balcer and Cheu, ‘Separating Local & Shuffled 
Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do just 
as well as central
Ghazi et al., ‘Differentially Private Aggregation in 
the Shuffle Model’.

|x | = |y |
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User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local 
randomiser

Reports/
messages Aggregator Output

Shuffle Privacy

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

Randomised Response gives near central 
error

Balle et al., ‘The Privacy Blanket of the Shuffle 

If we do not restrict we can do just 
as well as central
Balcer and Cheu, ‘Separating Local & Shuffled 
Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do just 
as well as central
Ghazi et al., ‘Differentially Private Aggregation in 
the Shuffle Model’.

|x | = |y |
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Rich history of research and improvements but all this work has been done under the semi honest model.



User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local 
randomiser

Reports/
messages Aggregator

z

Output

What happens when the curious become dishonest?

Derive bounds for how many users have to be corrupted for randomised 

response utility to be indistinguishable from 

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Bin(n,
1
2

)
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The aggregator could just output garbage



Relax the ideal world to allow for more curators

Don’t have enough money to corrupt all 
 curators. Let’s hope that

as long as at least 1 server is semi 
honest we will be fine

K

                 + Lap(
1
ϵ

)A1(x1, …, xn)

 AggregatorsK

z

Output

                 + Lap(
1
ϵ

)Ak(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

                 + Lap(
1
ϵ

)A(x1, …, xn)

x1

xi

xn

x1

xi

xn

…

…
AnalyserA(x1, …, xn)

U Plain Aggre

n

∑
i=1

xi

Outpu

What does it mean to be fine ?
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What we consider to be fine*

• Perfect Privacy of inputs + Differential privacy + 
Output is meaningful

• Perfect Privacy of inputs + Differential privacy + 
Output is not guaranteed to be meaningful

• Computational privacy of inputs + differential privacy 
+ output is “guaranteed”to be meaningful
• If an adversary violates any of this, the honest 

server detects this and tells everyone that they 
cheated and voids the protocol. 

* Fine is determined by assumptions 
that  curators and only guaranteed 
that  1 server is semi honest

K

Not possible
Ben Or, Goldwasser and Widgerson, ‘Completeness theorems for non 
cryptographic fault tolerant distributed computation’

Poplar: The focus is on lightweight protocols and the 
emphasis is on privacy
Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

Our work: Lightweight-ish but focus on realiability
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Linear Secret Sharing
Informal defintion 

• Two algorithms share and 
reconstruct s.t 

• Share( ) =  such that 
 for  and 

• Reconstruct( ) = 

s ∈ ℤq

s [s]1, …, [s]K
[s]i

R ℤq i ∈ [K − 1]

[s]K = s −
K−1

∑
i=1

[s]i

[s]1, …, [s]KK

∑
i=1

[s]i = s

Adversary in possession of  shares learns no Shannon 
information about 

K − 1
s

Example in  and 

Secret 

ℤ11 K = 3

s = 7

[s]1 = 4
[s]2 = 5
[s]3 = 9

3

∑
i=1

[s]i = (4 + 5 + 9) mod 11 = 7
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User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

PRIO

                 Ak(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

Correctness: 
n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi
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User 1 x1 [x1]1

User
Data

Encrypted 
shares  AggregatorsK

z

Output

Ballot stuffing

                 Ak(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

10 0 -2 0

A1(x1, …, xn)
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Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

20

Sketching protocol from work in 2016 on function secret sharing

Boyle, Gilboa, and Ishai, ‘Function Secret Sharing’.



Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

21

INTUITION:

We will create a random  degree two polynomial. If 
sampled  is not a root, then the only way to 0 out this 
polynomial is to have a single non zero entry equal to 1

The cheating client does not know the values of  thus with 

probability  fails to pass to the test

p( ⃗r )
⃗r

⃗r

2
q



Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

2. Server k broadcasts  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3
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Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

3. Server k broadcasts  and 

4. Each server computes  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3
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Sketching protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

3. Server k broadcasts  and 

4. Each server computes  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

Check: z2 − z * = 0

z3

z*3
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User 1 x1 [x1]1                  +                 + Targeted noiseA1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

K-1 corrupt servers

                 + Targeted noiseAk(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

User n

Is sketching still secure ?
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Sliding Attack on honest client

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

Check: z2 − z * = 0

Adds +1 at some index and subtracts -1

0 1 0 0x =

26

Leaks 1 bit of information.



Malicious Sketching

κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows 

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Show that the protocol is zero knowledge and a dishonest server does not 
learn any new information

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

The secrecy of  prevents a sliding attack.
We are abstracting details of implementation: In reality the client also has to supply beaver triples or 
Shares of 

κ

κ
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κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows 

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Collusions break Sketching protocols

Corrupt client has an illegal input, wants to be included in the protocol. 

Just tells the corrupt servers what they sent to honest server 1
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κ[x]2, [x]2 ∈ ℤM
q

κ[x]3, [x]3 ∈ ℤM
q

κ[x]1, [x]1 ∈ ℤM
q

Only the honest client knows 

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri(κ[xi]k)

Check: (z2 − z*) + (κz − z**) = 0

Collusions break Sketching protocols

Corrupt client has an illegal input, wants to be included in the protocol. 

Just tells the corrupt servers what they sent to honest server 1

z2 z*2

z3

z*3

Set
z1 + z2 = − z1
z*1 + z*2 = − z*1
z**1 + z**2 = − z**1

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1
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Our contribution

• We want the same trust model as PRIO/
POPLAR

• We want central privacy error guarantees
• If any party deviates from the protocol, 

the honest party can detect it as such 
and prove it to a court of law that this 
party deviated from the protocol. 

• Thus the output of the our protocol is either 
ABORT or valid

• This comes at the cost of 1-bit leak of 
information and some lightweight public key 
cryptography

Formalised as Covert Security

Aumann and Lindell, ‘Security Against Covert 
Adversaries’.

30



Contributions
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Pederson Commitments

• Let  be a sub group of  with order  where  and  are large 
primes such that 

• We have a secret  and we want to commit to it. Then a 
Peterson commitment to  is given by  
where  and  are randomly selected generators for 

• Given , a computationally unbounded adversary  cannot infer 
any information about  (Perfectly Hiding)

• Given , if adversary  that can find  such that 
, then  can solve the DLOG attack 

game (Computationally Binding)

𝔾q ℤ*p q p q
q |p − 1
s ∈ ℤq

s c = Com(s, t) = gsht

t R ℤq g, h 𝔾q

c 𝒜
s

c 𝒜 (s′￼, t′￼) ≠ (s, t)
Com(s, t) = Com(s′￼, t′￼) 𝒜
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Discrete Log Attack Game

Adversary Challenger

1. Pick  compute x R ℤq y = gx

2. Send  to adversaryg, y

3. Adversary guesses ̂x

Advantage(𝒜, 𝔾q) := Pr[ ̂x = x]

We do not know any PPT algorithm that has non negligible advantage in 
guessing  for large enough .x q
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Linearity trick — very useful

• Given  and 
, then 

•

• Addition in secret space is 
multiplication in commitment space

c1 = Com(s1, t1)
c2 = Com(s2, t2)
c1c2 = Com(s1 + s2, t1 + t2)
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Committed Input sharing

User 1 x1 [x1]1, t11

n

∑
i=1

[xi]1,
n

∑
i=1

ti1

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                 

n

∑
i=1

[xi]K,
n

∑
i=1

tiK[x1]K, t1K

 for all Com([xi]k, tik) i ∈ [n], k ∈ [k]

Public board for everyone to see
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Distributed and verifiable noise generation

• Key idea if the algorithm is linear — 
then we will use commitments to our 
advantage and not allow the corrupt 
parties to deviate

• Binomial noise can be generated 
using a distributed and linear 
protocol. 

36

See  Dwork et al., ‘Our Data, Ourselves’.



Binomial Mechanism 

• Given a bit from any 
arbitrary distribution

• And given 

•  is guaranteed to be 

• Use this along with commitments to 
get what what we want

bi ∈ {0,1}

ci ∼ Bernoulli(1/2)
zi = ci ⊕ bi
zi ∼ Bernoulli(1/2)
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Future work

• Can we lose that 1 bit leakage?
• Non linear protocols — could we 

leverage non-malleable codes for 
secret sharing ?

• Can we add bias to the noise 
sampler ?
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