
Ari Biswas, University Of Warwick/Amazon

Joint work with
Graham Cormode, University Of Warwick/Meta AI

1

Verifiable Differential Privacy For
When The Curious Become

Dishonest

2

Motivating Problem: DP Histograms

The local government of Wolvercote, a small
village in Oxfordshire want to know if they
should increase yearly public healthcare
spending.

In order to gauge public opinion they conduct a
survey over the population of the village

3

Survey Prompt:

Out of the following , please select the one that
best describes your health needs.

M
0 1 0 0

Motivating Problem: DP Histograms

Users can only select one out of options, i.e. they can vote for only one coordinate/candidate.

Input Format: We will assume that the user's input or vote is always a one-hot encoded vector where is
a large prime number (much larger than , the number of residents)

M

x ∈ ℤM
q q

n

Free monthly
checks

Cheaper
emergency… …

Client/Resident

4

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 Analyser A(x1, …, xn)

User
Data Plain text

reports Aggregator/Server

n

∑
i=1

xi

Output

An Ideal Solution

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data Plain text

reports
Aggregator

n

∑
i=1

xi

Output

PPT Adversary

Passive Adversary/Honest but
curious/ Semi honest

Follow all prescribed protocols but try
and learn as much additional information
from protocol transcript:

Will always assume secure point to point and broadcast channels.

Ideal/Trusted Party

Notation And Assumptions

Static Active Adversaries
Deviates from prescribed
protocol arbitrarily but is
computationally bounded

Unbounded
Adversary

5

6

n−1

∑
i=1

xi

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 Analyser A(x1, …, xn)

User
Data

Plain text
reports Aggregator/Server

n

∑
i=1

xi

Output

−

User is new to the village, and by comparing with last years numbers his input is compromisedn

Adversary Controls Users n − 1

7

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 Analyser A(x1, …, xn)

User
Data

Plain text
reports Aggregator/Server

n

∑
i=1

xi

Output

=
n

∑
i=1

xi

+

Add Random Noise To Protect The User

8

M(q(x)) 3 2 21 1

3 2 21 1M(q(x′￼))

I can’t tell if user even
participated.

n

n

∑
i=1

xi

n

∑
i=1

xi +

+

Random Noise blanket

How Much Noise? Differentially Private Noise

An algorithm satisfies differentially private if for every two neighbouring
datasets and for every query we have

 ,

M : (Xn × Q) → Z (ϵ, δ)
x ∼ x′￼ ∈ Xn q ∈ Q

∀T ⊆ Z ℙ[M(x, q) ∈ T] ≤ eϵ ℙ[M(x′￼, q) ∈ T] + δ

q(X) +
-incremental

function
k

Noise from
smooth
distribution

 is differentially private, where where is the global sensitivity of .

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation and
selection in the shuffle model of differential privacy.

M(q(X)) (ϵΔ, δΔ) (Y1, …, YM) i.i.d∼ D Δ q

⃗Y

9

A function is called -incremental if for all neighbouring datasets we have
. The histogram counting query is 1-incremental.

q : 𝒳n → ℤM k X ∼ X′￼

| |q(X) − q(X′￼) | |∞ ≤ k

K-incremental functions

M(q(X)) :=

How Do You Add Differentially Private Noise

10

A distribution over is -smooth if for all we have

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation
and selection in the shuffle model of differential privacy.

D ℤ (ϵ, δ, k) k′￼ ∈ [−k, k]

Pr
Y∼D [PrY′￼∼D[Y′￼ = Y]

PrY′￼∼D[Y′￼ = Y + k′￼]
≥ e|k′￼|ϵ] ≤ δ

Smooth Distributions

How Do You Add Differentially Private Noise

Examples of Smooth distributions:

Binomial, Gaussian, Poisson, Negative Binomial, Laplace

11

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

 Analyser A(x1, …, xn)

User
Data

Plain text
reports Aggregator

n

∑
i=1

xi

Output

Sees user data in plain text.
Could sell it later for profit.

What If I Cannot Trust The Curator Itself

12

When not mentioned specifically we assume |xi | = |yi |

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local
randomiser

Reports/
messages Aggregator

z

Output

Local Differential Privacy: Noisify At The Other End

13

M(R(x)) 1 1 0 1

1 1 0 1M(R(x′￼))

I can’t tell one
output from

another

Local Differential Privacy
An algorithm satisfies local differential privacy if for every two users

 ,
R : X → Y (ϵ, δ) x, x′￼ ∈ X

∀T ⊆ Y ℙ[R(x) ∈ T] ≤ eϵ ℙ[R(x′￼) ∈ T] + δ

Let p ∈ (0,1/2)

yi =
xi with pr. 1

2 + p

1 − xi with pr. 1
2 − p

LDP error | ̂f − f | ≤ O(
n

ϵ
)

 What we want to estimate

 What we

estimate

(In expectation they are the same)

f = ∑
i=1

xi

̂f =
n

∑
i=1

[1
2p

(yi − 1/2 + p)]

𝔼[̂f] = f

Central error | ̂f − f | ≤ O(
1
ϵ

)

Unavoidable

14

Randomised Response Is LDP

If you can attack Randomised Response, you can attack all LDP algorithms.
Thus Randomised Response generalises LDP algorithms.

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Randomised Response is optimal in LDP

Duchi, Jordan, and Wainwright, ‘Local Privacy, Data Processing Inequalities, and Statistical Minimax
Rates’.

Local Differential Privacy Is Quite Weak In Terms Of Privacy

Comparison is unfair — LDP imposes stricter privacy constraints than central privacy

Each user has to generate enough to noise to hide himself as opposed to each user has to generate enough noise to hide
amongst the crowd.

1 million people in the survey.
1% of the population says YES

With
Roughly 1/3 of the time, randomised
response claims 0% of the population
said YES

p = 0.49

If , then at least 90% of the time the central server observes the users true input — this is quite poor
when compared to semantic security provided by cryptography

p < 0.1

15

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local
randomiser

Reports/
messages Aggregator Output

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

16

Shuffle Privacy

Randomised Response gives near central
error

Balle et al., ‘The Privacy Blanket of the
Shuffle Model’.

If we do not restrict we can do
just as well as central

Balcer and Cheu, ‘Separating Local &
Shuffled Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do
just as well as central

Ghazi et al., ‘Differentially Private Aggregation
in the Shuffle Model’.

|x | = |y |

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local
randomiser

Reports/
messages Aggregator Output

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

17

Shuffle Privacy

Randomised Response gives near central
error

Balle et al., ‘The Privacy Blanket of the
Shuffle Model’.

If we do not restrict we can do
just as well as central

Balcer and Cheu, ‘Separating Local &
Shuffled Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do
just as well as central

Ghazi et al., ‘Differentially Private Aggregation
in the Shuffle Model’.

|x | = |y |

Rich line of work with semi-honest
models

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local
randomiser

Reports/
messages Aggregator

z

Output

18

What Happens When The Curious Become Dishonest?

Could ignore client data and output
whatever it wants

Without the guarantee of semi-honest behaviour, impossible to distinguish between a
corrupt run of the protocol and an honest run with different parameters.

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

19

End Of Act I: Summary
• 1. Under central privacy the central analyser has too much power. They can

see user inputs in plaintext and can output whatever they want. We are at the
mercy of this central analyser.

• 2. Local privacy is a very weak definition of privacy and the error rates are too
high.

• 3. Shuffle privacy — an attempt to bridge the gap between local and central
privacy still requires a secure shuffler/secure aggregator which is not efficient
under the single curator model. Not immune to malicious clients. Although the
analyser cannot see plaintext reports, it can manipulate the output as it desires

•

20

ACT II: Distributed Privacy
Find aggregators with conflicting
interests.

For example:
In an election, pick 1 analyser leaning right
and the other leaning left.

k ≥ 2

Don’t have enough money to corrupt all
curators. Let’s hope that

as long as at least 1 server is semi honest we
will be fine

K

Key Assumption

Analyser 1

Analyser 2

Analyser k

…

• Perfect Privacy of inputs + Differential privacy +
Output is untampered.

• Perfect Privacy of inputs + Differential privacy +
Output is not guaranteed to be meaningful

• Computational privacy of inputs + differential privacy
+ output is “guaranteed” to be meaningful
• If an adversary violates any of this, the honest

server detects this and tells everyone that they
cheated and voids the protocol.

 aggregators and only guaranteed
that 1 server is semi honest
K

21

What Is Possible Under These New Assumptions

Poplar: The focus is on lightweight protocols and the emphasis is on privacy

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

Not possible: Need number of bad actors to be strictly less than

Ben Or, Goldwasser and Widgerson, ‘Completeness theorems for non cryptographic fault tolerant
distributed computation’

K
3

OUR WORK

Schwartz-Zippel Lemma

Let be a non-zero polynomial of total degree over a field
. Let be a finite subset of and let be selected at random

independently and uniformly from S. Then

P(x1, …, xn) d ≥ 0
𝔽 S 𝔽 r1, …, rn

Pr [P(r1, …, rn) = 0] ≤
d

|S |

22

Informal defintion

• Two algorithms and

• For any

• () =

• such that for

and

• () =

𝚂𝙷𝙰𝚁𝙴 𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃
s ∈ ℤq

𝚂𝙷𝙰𝚁𝙴 s; k [s]1, …, [s]K

[s]i
R ℤq i ∈ [K − 1]

[s]K = s −
K−1

∑
i=1

[s]i(mod q)

𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃 [s]1, …, [s]KK

∑
i=1

[s]i(mod q) = s

Adversary in possession of shares learns no Shannon
information about

K − 1
s

Example in and

Secret

:

ℤ11 K = 3

s = 7

𝚂𝙷𝙰𝚁𝙴(s) =
[s]1 = 4
[s]2 = 5
[s]3 = 9

𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃
3

∑
i=1

[s]i = (4 + 5 + 9) mod 11 = 7

23

Linear Additive Secret Sharing

User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

 Ak(x1, …, xn)

 AK(x1, …, xn)

[x1]k

[x1]K

24

PRIO - Boneh et al. (Semi-Honest Servers)

Secret share each
coordinate independently

User n xn [xn]1
n

∑
i=1

[xi]1A1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

n

∑
i=1

[xi]kAk(x1, …, xn)

 +
n

∑
i=1

[xi]KAK(x1, …, xn)

[xn]k

[xn]K

25

PRIO - Boneh et al. (Semi-Honest Servers)
Attention: Vector sums

Each server computes aggregate over shares and
broadcasts these aggregates to each other.

Secret share each
coordinate independently

User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

 Ak(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

26

PRIO - Boneh et al. (Semi-Honest Servers)

Correctness:
K

∑
k=1

(
n

∑
i=1

[xi]k) =
n

∑
i=1

xi

Attention: Vector sums

Each server computes aggregate over shares

Secret share each
coordinate independently

Generating server adds noise to
each coordinate independently

User 1 x1 [x1]1

User
Data

Encrypted
shares AggregatorsK

z

Output

 Ak(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

10 0 -2 0

A1(x1, …, xn)

27

Ballot Stuffing

Now a single client can bias the output of the entire protocol arbitrarily — VERY BAD!

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

28

Defending Against Malicious Clients

Sketching protocol from work in 2016 on function secret
sharing
Boyle, Gilboa, and Ishai, ‘Function Secret Sharing’.

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

29

INTUITION:

We will create a degree two variate degree 2 polynomial
 such that if is not a root, then the only way to 0 out

this polynomial is to have a single non zero entry equal to 1.

The cheating client does not know the values of thus with

probability fails to pass to the test

M
p(⃗r) ⃗r

⃗r

2
q

Defending Against Malicious Clients
r1, …, rM

r1, …, rM

r1, …, rM

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

2. Server k broadcasts and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

30

Sketching Protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q 1. Server 1 samples where

independently and broadcasts it to other servers

2. Server k broadcasts and

3. Each server computes and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

31

Sketching Protocol

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q 1. Server 1 samples where

independently and broadcasts it to other servers

2. Server k broadcasts and

3. Each server computes and

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

Check: z2 − z * = 0

z3

z*3

32

Sketching Protocol

p(r1, …, rM) = ∑
i∈[M]

r2
i [x]i([x]i − 1) + 2∑

i≠j

rirj[x]i[x]j

33

Protocol Overview

Voting:

Clients send input
shares to servers

Verifying:

Servers collaboratively
verify that the input is
legal

Each server aggregates

n

∑
i=1

[xi]k

The analysers are all semi-honest, next we will see how to deal with actively adversarial servers

34

Protocol Overview

Voting:

Clients send input
shares to servers

Verifying:

Servers collaboratively
verify that the input is
legal

Broadcast

𝙻𝚊𝚙(
1
ϵ

) +
K

∑
k=1

n

∑
i=1

[xi]k =
n

∑
i=1

xi + 𝙻𝚊𝚙(
1
ϵ

)

The analysers are all semi-honest, next we will see how to deal with actively adversarial servers

User 1 x1 [x1]1 + + Targeted noiseA1(x1, …, xn)

User
Data

Encrypted
shares AggregatorsK

z

Output

 + Targeted noiseAk(x1, …, xn)

 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

User n

Is sketching still secure ?

35

Upto K-1 Corrupt Servers

[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

Check: z2 − z * = 0

Adds +1 at some index and subtracts -1

0 1 0 0x =

36

Leaks 1 bit of information.

Sliding Attack On Honest Client

[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

Only the honest client knows

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri([κxi]k)

Check: (z2 − z*) + (κz − z**) = 0

The secrecy of prevents a sliding attack.
We are abstracting details of implementation: In reality the client also has to supply beaver triples or
Shares of

κ

κ

37

Malicious Sketching

Show that the protocol is zero knowledge and a dishonest server
does not learn any new information

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

A dishonest client can just tell colluding
servers the value for κ

Check: (z2 − z*) + (κz − z**) = 0

Corrupt client has an illegal input, wants to be included in the protocol.

Just tells the corrupt servers what they sent to honest server 1

38

Collusions Break Sketching Protocols

10 0 -2 0

[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

Check: (z2 − z*) + (κz − z**) = 0

Corrupt client has an illegal input, wants to be included in the protocol.

Just tells the corrupt servers what they sent to honest server 1

z2 z*2

z3

z*3

Set
z1 + z2 = − z1
z*1 + z*2 = − z*1
z**1 + z**2 = − z**1

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

39

Collusions Break Sketching Protocols

A dishonest client can just tell colluding
servers the value for κ

• Manipulate an honest clients input and
exclude them from the protocol.

• Include a malicious input into the
protocol.

• Manipulate the noise generation protocol
to bias the output of the protocol
arbitrarily.

40

Summary Of Malicious Activities

(a) (b)

Analyser A(y1, …, yn) z

We want to keep all the nice
properties of the protocols discussed
so far but be able to thwart these
attacks

ACT III: Accountability + Privacy

Key observation: If we ignore the noise generation
procedure, histograms and the sketching algorithms are a
linear function of client inputs.

Key assumption: The clients/servers have negligible
advantage in solving the discrete log problem

41

Discrete Log Attack Game

Adversary Challenger

1. Pick compute x R ℤq y = gx

2. Send to adversaryg, y

3. Adversary guesses ̂x

Advantage(𝒜, 𝔾q) := Pr[̂x = x]

We do not know any PPT algorithm that has non negligible advantage in
guessing for large enough .x q

42

Let be a sub group of with order where and are large primes such that
and is a generator of

𝔾q ℤ*p q p q q |p − 1
g 𝔾q

Pedersen Commitments

• Let be a sub group of with order where and are large
primes such that

• COMMIT: We have a secret and we want to commit to it.
Then a Peterson commitment to is given by

 where and is randomly selected
generators for and for some random .

𝔾q ℤ*p q p q
q |p − 1

s ∈ ℤq
s

c = Com(s, t) = gsht t R ℤq g
𝔾q h = gα α R Zq

43

 such that s, t
𝙲𝚘𝚖(s, t) = c

: Message in a
locked box.
Only way to open it
is to have the key

c

Pedersen Commitments

44

• Given , a computationally unbounded adversary cannot infer
any information about (Perfectly Hiding)

• Given , if adversary can find such that
, then can solve the DLOG attack

game (Computationally Binding)

c 𝒜
x

c 𝒜 (s′￼, t′￼) ≠ (s, t)
Com(s, t) = Com(s′￼, t′￼) 𝒜

c = Com(x, r) Pr [̂x = 0 |c] = Pr [̂x = 1 |c]

Hard to fake the
key to the box.

Homomorphism
• Given and , then

•

• Important trick we will use a lot:

• Let and . Let be the respective
commitments.

• Someone claims and .

• Then

c1 = Com(s1, t1) c2 = Com(s2, t2)
c1c2 = Com(s1 + s2, t1 + t2)

a, b, c ∈ Zq ra, rb, rc
R Z3

q ca, cb, cc

x = a + b + c(mod q) y = ra + rb + rc(mod q)
gxhy = cacbcc

45

Addition in plaintext space is multiplication in ciphertext space.

46

Publicly Verifiable Covert Security
• Participants in the protocol may deviate arbitrarily from the prescribed

instructions.

• This deviation might violate an honest party's privacy.

• However, this violation is detected by an honest party with a constant

probability , and the honest party can prove who cheated.

• In our case, , so the honest party will detect
and abort the protocol in case of any violations.

ρ >
1
2

ρ = 1 − 𝙰𝚍𝚟(DLog) ≈ 1

Informal defintion

47

Protocol Overview: Previously

Voting:

Clients send input
shares to servers

Verifying:

Servers collaboratively
verify that the input is
legal

Aggregating:

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

48

Protocol Overview: Now

Committed Voting:

Clients send input
shares to servers

Active Verifying:

Servers collaboratively
verify that the input is
legal

Verifiable Aggregating

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

Noise Generation

Servers collaboratively
verify that the output is
differentially private.

Committed Voting

User i xi [xi]1, ti1

n

∑
i=1

[xi]1,
n

∑
i=1

ti1

User
Data

Encrypted
shares AggregatorsK Output

n

∑
i=1

[xi]K,
n

∑
i=1

tiK[xi]K, tiK

 for all Com([xi]k, tik) i ∈ [n], k ∈ [K]

Public board for everyone to see

49

xi =
k

∑
k=1

[xi]k

 for tik
R ℤq k ∈ [K]

[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q

1. Server 1 samples where
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

50

INTUITION:

We will create a degree two polynomial such that if is
not a root, then the only way to 0 out this polynomial is to
have a single non zero entry equal to 1.

The cheating client does not know the values of thus with

probability fails to pass to the test

p(⃗r) ⃗r

⃗r

2
q

Defending Against Malicious Clients And Servers

r1, …, rM

r1, …, rM

r1, …, rM

 where and αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

Total of public commitmentsKM

[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q

51

r1, …, rM

r1, …, rM

r1, …, rM

 where and αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

u1 =
M

∑
j=1

rit1j w1 =
M

∑
j=1

r2
i t1j

u2 w2

u3

w3

Defending Against Malicious Clients And Servers

New messages

[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q

52

Defending Against Malicious Clients
r1, …, rM

r1, …, rM

r1, …, rM

 where and αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

u1 =
M

∑
j=1

rit1j w1 =
M

∑
j=1

r2
i t1j

u2 w2

u3

w3

BROADCAST

53

Defending Against Malicious Clients And Servers
Each server receives from Server : k zk, z*k , uk, wk

If this test fails — Server aborts the
protocol and declares that the protocol has
been tampered with

If this test passes — Servers have not
cheated so far. Next, check if client input is
well formed

Check if where and z2 − z* = 0 z =
K

∑
k=1

zk z* =
K

∑
k=1

z*k

54

Theorem
Let represent an honest client's input and denote the deterministic function
that checks if . Let refer to the protocol described earlier

Then securely computes with abort in the presence of static covert
adversary with -deterrent, where .

⃗v fverify⃗v ∈ V πsketch

πsketch f
ρ ρ = 1 − 𝙰𝚍𝚟𝒜(DLog) ≈ 1

(a) (b)

55

Proof Sketch
• The issue with the original sketching proof was that the server could tamper with

user inputs, and therefore infer information about users inputs.

• 1. So if we could just detect if they have tampered with the inputs we would be
good. Furthermore, we don’t want lying clients saying their inputs were tampered
with when in fact they were not.

• 2. By committing to their inputs, the clients cannot later change their mind about
their inputs.

• 3. The homomorphic property of our commitment scheme ensures that when the
servers broadcast their linear sketch output, the only way to get the authentication
test to align — is to break the binding property of the commitment scheme.

56

Verifiable Noise Generation

• The only inputs included are honest inputs. Note if we did not need DP.
We are done! We can use the commitments to verify that the servers
aggregate their shares correctly.

Committed Voting:

Clients send input
shares to servers

Active Verifying:

Servers collaboratively
verify that the input is
legal

Verifiable Aggregating

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

?

57

Verifiable But Private Noise
n

∑
i=1

xi + The actual random value of the noise should remain private
to everyone.

As the total noise is secret, any server could just use adversarial noise and the other servers have no way of
verifying what the other malicious server did.

So we must design a protocol that still preserves the secrecy of noise while ensuring that any party that adds
malicious noise gets caught

Challenge:

Desired Outcome

58

Binomial Mechanism
The binomial distribution is smooth

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation and
selection in the shuffle model of differential privacy.

(ϵ, δ, k)

 Fix and , then, the additive mechanism using results in -differentially

private -bin histograms where .

η > 30 0 ≤ δ ≤ o(1
η) 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,

1
2

) (ϵ, δ)

M ϵ = 10 1
η ln 2

δ

As a direct consequence of the results of Ghazi et al.

Thus if we could guarantee that the servers added noise to the output of the protocol we would get DP.𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)

59

A Well Known Fact
• Given a bit sampled from any arbitrary

• And given

• is guaranteed to be

bi ∈ {0,1} 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(𝚙)
ci ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)

zi = ci ⊕ bi zi ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)

IDEA: If we could generate verifiable public randomness, then we could ensure that regardless of what
the an actor does, the final distribution is DP suitable.

Ideal Morra
• Each party simultaneously samples a value from

uniformly at random and then broadcast their sampled values to each
other.

• As long as a single party does this sampling honestly, the sum of

their values is also a uniformly random value

sampled from

•

k ak
R ℤq

(
K

∑
k=1

ak) mod q

ℤq

a1
R ℤqa2

R ℤq

a3
R ℤq

We now have a way to generate public randomness
even in presence of malicious actors.

60

61

Ideal Morra

a1
R ℤqa2

R ℤq

a3
R ℤq

There is no practical way to guarantee that they will all sample these values at exactly the same time. If a malicious
party sees the output of an honest party, they can adjust their value.

• Each party simultaneously samples a value from
uniformly at random and then broadcast their sampled values to each
other.

• As long as a single party does this sampling honestly, the sum of

their values is also a uniformly random value

sampled from

•

k ak
R ℤq

(
K

∑
k=1

ak) mod q

ℤq

62

Real Morra: First Commit Then Reveal
• Each party samples a value from uniformly

at random.

• They then broadcast a commitment of this value to all
other parties.

• Once all commitments have been revealed, the
parties reveal their random values in any order.

• With each reveal, each party checks whether the
released values open to the same commitment.

•

k ak
R ℤq

a1
R ℤqa2

R ℤq

a3
R ℤq

 for all Com([ak, tk) k ∈ [k]
Formal simulator proof of security can be found in

Blum M., 1983, Coin Flipping Over A Telephone A Protocol For Solving Impossible Problems

63

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
b1

R V

bη
R V

• The generating server samples valid votes uniformly
randomly.

η

….

64

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1

• Samples valid votes uniformly randomly.

• Secret share them using verifiable committed secret
sharing.

η

[b1]2, …, [bη]2

[b1]K, …, [bη]K

Shares are guaranteed to be
well formed!

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

65

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

All of them play Morra to
Generate public randomness

 where

for all and

c1, …, cη

cij ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)
i ∈ [η] j ∈ [M]

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

66

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

We know for certain that for all and :

The boolean circuit is

 if
 if

bij ∈ {0,1} i ∈ [η] j ∈ [M]

zij = bij ⊕ cij

zij = bij cij = 0
zij = 1 − bij cij = 1

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

67

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

We know for certain that for all and :

The boolean circuit is

 if
 if

bij ∈ {0,1} i ∈ [η] j ∈ [M]

zij = bij ⊕ cij

zij = bij cij = 0
zij = 1 − bij cij = 1

 is public! Thus each server can adjust their shares accordinglycij

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

68

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

Operations for Server k

 if

 if

zij = bij cij = 0

[zij]k = 1 − [bij]k cij = 1

But HANG ON! If I change the shares, the commitments won’t align

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

69

Distributed Noise Generation Protocol
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

Operations for Server k

 if

 if

zij = bij cij = 0

[zij]k = 1 − [bij]k cij = 1

But HANG ON! If I change the shares, the commitments won’t align

Updates are linear — So commitments can be adjusted accordingly in ciphertext space.

Let , then α = Com(x, r) α−1 ⋅ (gh) = Com(1 − x,1 − r)

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

70

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
η

∑
i=1

[zi]1

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Broadcast

η

∑
i=1

[zi]2

η

∑
i=1

[zi]K

Use commitments to verify that every
server, has broadcasted messages
correctly

Servers Broadcast Their shares

71

Aggregate

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Y1 = (
η

∑
i=1

k

∑
k=1

[zi]k)

The generating server is the only server that knows
. All other servers operate on information

theoretically private shares.

But the generating server still knows the value for
randomness — so the protocol is not private.

b1, …, bη

Each coordinate of Y1 ∼ 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)

Attention

η

∑
i=1

[zi]1
η

∑
i=1

[zi]2

η

∑
i=1

[zi]K

Server 1

Server K

Server 2

72

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Yk = (
η

∑
i=1

k

∑
k=1

[zi]k)

Each server has a go at being the generating server, before broadcasting their shares.
As 1 server is guaranteed to be semi-honest, the final sum of all the noise remains private

Server k

Server K

Server 1

Total noise: Y = Y1 + … + YK

Variance: instead of but is a small number, so can be treated as a constant.
kη
4

η
4

k

η

∑
i=1

[zi]k
η

∑
i=1

[zi]1

η

∑
i=1

[zi]K

Each Server Takes A Turn To Be Generating
Server

73

In Summary: Verifiable DP Histograms

(Y1 + … + YK) +
n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi + Y

Guaranteed to have
copies of

k

𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,0.5)

As long as 1 server is
semi-honest, no server
knows the value of YNoise and inputs are committed.

Each broadcast is verifiable.

74

Conclusion/Open Questions
• We have a protocol by which we get verified histogram protocols.

• Open questions:

• - Can we make variance independent of the number of servers

• - Committments worked out because the protocol and the noise
generation was linear, are there efficient methods for non-linear protocols.

•

K

75

Information-Theoretic Privacy

• If we could guarantee that number of bad servers was strictly less than ,

then via robust secret sharing, using Reed-Solomon Codes, we could get
rid of the need for commitments.

•

K
3

76

