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Verifiable Differential Privacy For 
When The Curious Become 

Dishonest
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Motivating Problem: DP Histograms

The local government of Wolvercote, a small 
village in Oxfordshire want to know if they 
should increase yearly public healthcare 
spending.

In order to gauge public opinion they conduct a 
survey over the population of the village
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Survey Prompt: 

Out of the following , please select the one that 
best describes your health needs. 

M
0 1 0 0

Motivating Problem: DP Histograms

Users can only select one out of  options, i.e. they can vote for only one coordinate/candidate.

Input Format: We will assume that the user's input or vote is always a one-hot encoded vector  where  is 
a large prime number (much larger than , the number of residents)

M

x ∈ ℤM
q q

n

Free monthly
checks

Cheaper 
emergency… …

Client/Resident
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User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

  Analyser A(x1, …, xn)

User
Data Plain text 

reports Aggregator/Server

n

∑
i=1

xi

Output

An Ideal Solution



User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

Analyser A(x1, …, xn)

User
Data Plain text 

reports
Aggregator

n

∑
i=1

xi

Output

PPT Adversary

Passive Adversary/Honest but 
curious/ Semi honest

Follow all prescribed protocols but try 
and learn as much additional information 
from protocol transcript:  

Will always assume secure point to point and broadcast channels.

Ideal/Trusted Party

Notation And Assumptions

Static Active Adversaries
Deviates from prescribed 
protocol arbitrarily but is 
computationally bounded

Unbounded
Adversary

5
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n−1

∑
i=1

xi

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

  Analyser A(x1, …, xn)

User
Data

Plain text 
reports Aggregator/Server

n

∑
i=1

xi

Output

−

User  is new to the village, and by comparing with last years numbers his input is compromisedn

Adversary Controls Users n − 1



7

User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

  Analyser A(x1, …, xn)

User
Data

Plain text 
reports Aggregator/Server

n

∑
i=1

xi

Output

=
n

∑
i=1

xi

+

Add Random Noise To Protect The User
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M(q(x)) 3 2 21 1

3 2 21 1M(q(x′￼))

I can’t tell if user  even 
participated.

n

n

∑
i=1

xi

n

∑
i=1

xi +

+

Random Noise blanket

How Much Noise? Differentially Private Noise

An algorithm  satisfies  differentially private if for every two neighbouring 
datasets  and  for every query  we have

 ,   

M : (Xn × Q) → Z (ϵ, δ)
x ∼ x′￼ ∈ Xn q ∈ Q

∀T ⊆ Z ℙ[M(x, q) ∈ T] ≤ eϵ ℙ[M(x′￼, q) ∈ T] + δ



q(X) +
-incremental 

function
k

Noise from 
smooth 
distribution

 is  differentially private, where  where  is the global sensitivity of .

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation and 
selection in the shuffle model of differential privacy.

M(q(X)) (ϵΔ, δΔ) (Y1, …, YM) i.i.d∼ D Δ q

⃗Y
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A function  is called -incremental if for all neighbouring datasets  we have 
. The histogram counting query is 1-incremental.

q : 𝒳n → ℤM k X ∼ X′￼

| |q(X) − q(X′￼) | |∞ ≤ k

K-incremental functions

M(q(X)) :=

How Do You Add Differentially Private Noise
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A distribution  over  is -smooth if for all  we have

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation 
and selection in the shuffle model of differential privacy.

D ℤ (ϵ, δ, k) k′￼ ∈ [−k, k]

Pr
Y∼D [ PrY′￼∼D[Y′￼ = Y]

PrY′￼∼D[Y′￼ = Y + k′￼]
≥ e|k′￼|ϵ] ≤ δ

Smooth Distributions

How Do You Add Differentially Private Noise

Examples of Smooth distributions:

Binomial, Gaussian, Poisson, Negative Binomial, Laplace
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User 1 x1

User i xi

User n xn

x1

xi

xn

…

…

  Analyser A(x1, …, xn)

User
Data

Plain text 
reports Aggregator

n

∑
i=1

xi

Output

Sees user data in plain text. 
Could sell it later for profit. 

What If I Cannot Trust The Curator Itself
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When not mentioned specifically we assume |xi | = |yi |

User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local 
randomiser

Reports/
messages Aggregator

z

Output

Local Differential Privacy:  Noisify At The Other End
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M(R(x)) 1 1 0 1

1 1 0 1M(R(x′￼))

I can’t tell one 
output from 

another

Local Differential Privacy
An algorithm  satisfies  local differential privacy if for every two users 

 ,   
R : X → Y (ϵ, δ) x, x′￼ ∈ X

∀T ⊆ Y ℙ[R(x) ∈ T] ≤ eϵ ℙ[R(x′￼) ∈ T] + δ



Let p ∈ (0,1/2)

yi =
xi  with pr.  1

2 + p

1 − xi  with pr.  1
2 − p

LDP error            | ̂f − f | ≤ O(
n

ϵ
)

  What we want to estimate 

 What we 

estimate

 

(In expectation they are the same)

f = ∑
i=1

xi

̂f =
n

∑
i=1

[ 1
2p

(yi − 1/2 + p)]

𝔼[ ̂f ] = f

Central error      | ̂f − f | ≤ O(
1
ϵ

)

Unavoidable 
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Randomised Response Is LDP

If you can attack Randomised Response, you can attack all LDP algorithms. 
Thus Randomised Response generalises LDP algorithms.

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.

Randomised Response is optimal in LDP

Duchi, Jordan, and Wainwright, ‘Local Privacy, Data Processing Inequalities, and Statistical Minimax 
Rates’.



Local Differential Privacy Is Quite Weak In Terms Of Privacy

Comparison is unfair — LDP imposes stricter privacy constraints than central privacy

Each user has to generate enough to noise to hide himself as opposed to each user has to generate enough noise to hide 
amongst the crowd.

1 million people in the survey.
1% of the population says YES

With  
Roughly 1/3 of the time, randomised 
response claims 0% of the population 
said YES

p = 0.49

If , then at least 90% of the time the central server observes the users true input — this is quite poor 
when compared to semantic security provided by cryptography

p < 0.1

15



User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local 
randomiser

Reports/
messages Aggregator Output

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi

16

Shuffle Privacy

Randomised Response gives near central 
error

Balle et al., ‘The Privacy Blanket of the 
Shuffle Model’.

If we do not restrict we can do 
just as well as central

Balcer and Cheu, ‘Separating Local & 
Shuffled Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do 
just as well as central

Ghazi et al., ‘Differentially Private Aggregation 
in the Shuffle Model’.

|x | = |y |



User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

User
Data

Local 
randomiser

Reports/
messages Aggregator Output

Analyser A(y1, …, yn) z
S

n

∑
i=1

yi
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Shuffle Privacy

Randomised Response gives near central 
error

Balle et al., ‘The Privacy Blanket of the 
Shuffle Model’.

If we do not restrict we can do 
just as well as central

Balcer and Cheu, ‘Separating Local & 
Shuffled Differential Privacy via Histograms’.

|x | = |y | If we do not restrict we can do 
just as well as central

Ghazi et al., ‘Differentially Private Aggregation 
in the Shuffle Model’.

|x | = |y |

Rich line of work with semi-honest 
models 



User 1 x1 R1(x1)

User i xi Ri(xi)

User n xn Rn(xn)

y1

yi

yn

…

…

Analyser A(y1, …, yn)

User
Data

Local 
randomiser

Reports/
messages Aggregator

z

Output
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What Happens When The Curious Become Dishonest?

Could ignore client data and output 
whatever it wants

Without the guarantee of semi-honest behaviour, impossible to distinguish between a 
corrupt run of the protocol and an honest run with different parameters. 

Cheu, Smith, and Ullman, ‘Manipulation Attacks in Local Differential Privacy’.
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End Of Act I: Summary 
• 1. Under central privacy the central analyser has too much power. They can 

see user inputs in plaintext and can output whatever they want. We are at the 
mercy of this central analyser.


• 2. Local privacy is a very weak definition of privacy and the error rates are too 
high. 


• 3. Shuffle privacy — an attempt to bridge the gap between local and central 
privacy still requires a secure shuffler/secure aggregator which is not efficient 
under the single curator model. Not immune to malicious clients. Although the 
analyser cannot see plaintext reports, it can manipulate the output as it desires


•
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ACT II: Distributed Privacy
Find  aggregators with conflicting 
interests. 

For example: 
In an election, pick 1 analyser leaning right 
and the other leaning left.

k ≥ 2

Don’t have enough money to corrupt all  
curators. Let’s hope that

as long as at least 1 server is semi honest we 
will be fine

K

Key Assumption 

Analyser 1

Analyser 2

Analyser k

…



• Perfect Privacy of inputs + Differential privacy + 
Output is untampered.

• Perfect Privacy of inputs + Differential privacy + 
Output is not guaranteed to be meaningful

• Computational privacy of inputs + differential privacy 
+ output is “guaranteed” to be meaningful
• If an adversary violates any of this, the honest 

server detects this and tells everyone that they 
cheated and voids the protocol. 

 aggregators and only guaranteed 
that 1 server is semi honest
K
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What Is Possible Under These New Assumptions

Poplar: The focus is on lightweight protocols and the emphasis is on privacy

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.

Not possible: Need number of bad actors to be strictly less than 

Ben Or, Goldwasser and Widgerson, ‘Completeness theorems for non cryptographic fault tolerant 
distributed computation’

K
3

OUR WORK



Schwartz-Zippel Lemma

Let  be a non-zero polynomial of total degree   over a field  
. Let  be a finite subset of  and let   be selected at random 

independently and uniformly from S. Then

P(x1, …, xn) d ≥ 0
𝔽 S 𝔽 r1, …, rn

Pr [P(r1, …, rn) = 0] ≤
d

|S |

22



Informal defintion 

• Two algorithms  and  

• For any 

• ( ) = 

•  such that  for  

and 

• ( ) =

𝚂𝙷𝙰𝚁𝙴 𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃
s ∈ ℤq

𝚂𝙷𝙰𝚁𝙴 s; k [s]1, …, [s]K

[s]i
R ℤq i ∈ [K − 1]

[s]K = s −
K−1

∑
i=1

[s]i( mod q)

𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃 [s]1, …, [s]KK

∑
i=1

[s]i( mod q) = s

Adversary in possession of  shares learns no Shannon 
information about 

K − 1
s

Example in  and 

Secret 

:

ℤ11 K = 3

s = 7

𝚂𝙷𝙰𝚁𝙴(s) =
[s]1 = 4
[s]2 = 5
[s]3 = 9

𝚁𝙴𝙲𝙾𝙽𝚂𝚃𝚁𝚄𝙲𝚃
3

∑
i=1

[s]i = (4 + 5 + 9) mod 11 = 7
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Linear Additive Secret Sharing



User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                 Ak(x1, …, xn)

                 AK(x1, …, xn)

[x1]k

[x1]K
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PRIO - Boneh et al. (Semi-Honest Servers)

Secret share each 
coordinate independently



User n xn [xn]1                 
n

∑
i=1

[xi]1A1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                
n

∑
i=1

[xi]kAk(x1, …, xn)

                 +
n

∑
i=1

[xi]KAK(x1, …, xn)

[xn]k

[xn]K
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PRIO - Boneh et al. (Semi-Honest Servers)
Attention: Vector sums

Each server computes aggregate over shares and 
broadcasts these aggregates to each other. 

Secret share each 
coordinate independently



User 1 x1 [x1]1 A1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                 Ak(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

26

PRIO - Boneh et al. (Semi-Honest Servers)

Correctness: 
K

∑
k=1

(
n

∑
i=1

[xi]k) =
n

∑
i=1

xi

Attention: Vector sums

Each server computes aggregate over shares

Secret share each 
coordinate independently

Generating server adds noise to 
each coordinate independently



User 1 x1 [x1]1

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                 Ak(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

10 0 -2 0

A1(x1, …, xn)
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Ballot Stuffing

Now a single client can bias the output of the entire protocol arbitrarily — VERY BAD!



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

28

Defending Against Malicious Clients

Sketching protocol from work in 2016 on function secret 
sharing
Boyle, Gilboa, and Ishai, ‘Function Secret Sharing’.



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

29

INTUITION:

We will create a degree two  variate degree 2 polynomial 
 such that if  is not a root, then the only way to 0 out 

this polynomial is to have a single non zero entry equal to 1.

The cheating client does not know the values of  thus with 

probability  fails to pass to the test

M
p( ⃗r ) ⃗r

⃗r

2
q

Defending Against Malicious Clients
r1, …, rM

r1, …, rM

r1, …, rM



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

2. Server k broadcasts  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3
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Sketching Protocol



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q 1. Server 1 samples  where  

independently and broadcasts it to other servers

2. Server k broadcasts  and 

3. Each server computes  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3
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Sketching Protocol



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q 1. Server 1 samples  where  

independently and broadcasts it to other servers

2. Server k broadcasts  and 

3. Each server computes  and 

r1, …, rM ri
R ℤq

zk =
M

∑
j=1

ri[xj]k

z*k =
M

∑
j=1

r2
i [xj]k

z =
3

∑
i=1

zi z* =
3

∑
i=1

z*i

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

Check: z2 − z * = 0

z3

z*3
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Sketching Protocol

p(r1, …, rM) = ∑
i∈[M]

r2
i [x]i([x]i − 1) + 2∑

i≠j

rirj[x]i[x]j
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Protocol Overview

Voting:

Clients send input 
shares to servers

Verifying:

Servers collaboratively 
verify that the input is 
legal

Each server aggregates

n

∑
i=1

[xi]k

The analysers are all semi-honest, next we will see how to deal with actively adversarial servers
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Protocol Overview

Voting:

Clients send input 
shares to servers

Verifying:

Servers collaboratively 
verify that the input is 
legal

Broadcast

𝙻𝚊𝚙(
1
ϵ

) +
K

∑
k=1

n

∑
i=1

[xi]k =
n

∑
i=1

xi + 𝙻𝚊𝚙(
1
ϵ

)

The analysers are all semi-honest, next we will see how to deal with actively adversarial servers



User 1 x1 [x1]1                  +                 + Targeted noiseA1(x1, …, xn)

User
Data

Encrypted 
shares  AggregatorsK

z

Output

                 + Targeted noiseAk(x1, …, xn)

                 + Lap(
1
ϵ

)AK(x1, …, xn)

[x1]k

[x1]K

1 0 0 0

User n

Is sketching still secure ?

35

Upto K-1 Corrupt Servers



[x]2 ∈ ℤM
q

[x]3 ∈ ℤM
q

[x]1 ∈ ℤM
q

r1, …, rM

r1, …, rM

r1, …, rM

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

Check: z2 − z * = 0

Adds +1 at some index and subtracts -1

0 1 0 0x =

36

Leaks 1 bit of information.

Sliding Attack On Honest Client



[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

Only the honest client knows 

Servers now also broadcast

κ

z**k =
M

∑
i=1

ri([κxi]k)

Check: (z2 − z*) + (κz − z**) = 0

The secrecy of  prevents a sliding attack.
We are abstracting details of implementation: In reality the client also has to supply beaver triples or 
Shares of 

κ

κ
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Malicious Sketching

Show that the protocol is zero knowledge and a dishonest server 
does not learn any new information

Boneh et al., ‘Lightweight Techniques for Private Heavy Hitters’.



[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

A dishonest client can just tell colluding 
servers the value for κ

Check: (z2 − z*) + (κz − z**) = 0

Corrupt client has an illegal input, wants to be included in the protocol. 

Just tells the corrupt servers what they sent to honest server 1

38

Collusions Break Sketching Protocols

10 0 -2 0



[κx]2, [x]2 ∈ ℤM
q

[κx]3, [x]3 ∈ ℤM
q

[κx]1, [x]1 ∈ ℤM
q

Check: (z2 − z*) + (κz − z**) = 0

Corrupt client has an illegal input, wants to be included in the protocol. 

Just tells the corrupt servers what they sent to honest server 1

z2 z*2

z3

z*3

Set
z1 + z2 = − z1
z*1 + z*2 = − z*1
z**1 + z**2 = − z**1

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

39

Collusions Break Sketching Protocols

A dishonest client can just tell colluding 
servers the value for κ



• Manipulate an honest clients input and 
exclude them from the protocol. 

• Include a malicious input into the 
protocol. 

• Manipulate the noise generation protocol 
to bias the output of the protocol 
arbitrarily. 

40

Summary Of Malicious Activities

(a) (b)

Analyser A(y1, …, yn) z

We want to keep all the nice 
properties of the protocols discussed 
so far but be able to thwart these 
attacks



ACT III: Accountability + Privacy

Key observation: If we ignore the noise generation 
procedure, histograms and the sketching algorithms are a 
linear function of client inputs. 

Key assumption: The clients/servers have negligible 
advantage in solving the discrete log problem

41



Discrete Log Attack Game

Adversary Challenger

1. Pick  compute x R ℤq y = gx

2. Send  to adversaryg, y

3. Adversary guesses ̂x

Advantage(𝒜, 𝔾q) := Pr[ ̂x = x]

We do not know any PPT algorithm that has non negligible advantage in 
guessing  for large enough .x q

42

Let  be a sub group of  with order  where  and  are large primes such that  
and  is a generator of 

𝔾q ℤ*p q p q q |p − 1
g 𝔾q



Pedersen Commitments

• Let  be a sub group of  with order  where  and  are large 
primes such that 

• COMMIT: We have a secret  and we want to commit to it. 
Then a Peterson commitment to  is given by 

 where  and  is randomly selected 
generators for  and  for some random .

𝔾q ℤ*p q p q
q |p − 1

s ∈ ℤq
s

c = Com(s, t) = gsht t R ℤq g
𝔾q h = gα α R Zq

43

 such that s, t
𝙲𝚘𝚖(s, t) = c

: Message in a 
locked box.
Only way to open it 
is to have the key

c



Pedersen Commitments
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• Given , a computationally unbounded adversary  cannot infer 
any information about  (Perfectly Hiding)

• Given , if adversary  can find  such that 
, then  can solve the DLOG attack 

game (Computationally Binding)

c 𝒜
x

c 𝒜 (s′￼, t′￼) ≠ (s, t)
Com(s, t) = Com(s′￼, t′￼) 𝒜

c = Com(x, r) Pr [ ̂x = 0 |c] = Pr [ ̂x = 1 |c]

Hard to fake the 
key to the box.



Homomorphism
• Given  and , then 

•

• Important trick we will use a lot:

• Let  and . Let  be the respective 
commitments.

• Someone claims   and .

• Then 

c1 = Com(s1, t1) c2 = Com(s2, t2)
c1c2 = Com(s1 + s2, t1 + t2)

a, b, c ∈ Zq ra, rb, rc
R Z3

q ca, cb, cc

x = a + b + c( mod q) y = ra + rb + rc( mod q)
gxhy = cacbcc

45

Addition in plaintext space is multiplication in ciphertext space.
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Publicly Verifiable Covert Security
• Participants in the protocol may deviate arbitrarily from the prescribed 

instructions. 


• This deviation might violate an honest party's privacy. 

• However, this violation is detected by an honest party with a constant 

probability  , and the honest party can prove who cheated. 


• In our case,  , so the honest party will detect 
and abort the protocol in case of any violations. 

ρ >
1
2

ρ = 1 − 𝙰𝚍𝚟(DLog) ≈ 1

Informal defintion 
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Protocol Overview: Previously

Voting:

Clients send input 
shares to servers

Verifying:

Servers collaboratively 
verify that the input is 
legal

Aggregating:

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi
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Protocol Overview: Now

Committed Voting:

Clients send input 
shares to servers

Active Verifying:

Servers collaboratively 
verify that the input is 
legal

Verifiable Aggregating 

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

Noise Generation

Servers collaboratively 
verify that the output is 
differentially private.



Committed Voting

User i xi [xi]1, ti1

n

∑
i=1

[xi]1,
n

∑
i=1

ti1

User
Data

Encrypted 
shares  AggregatorsK Output

                 

n

∑
i=1

[xi]K,
n

∑
i=1

tiK[xi]K, tiK

 for all Com([xi]k, tik) i ∈ [n], k ∈ [K]

Public board for everyone to see

49

xi =
k

∑
k=1

[xi]k

 for tik
R ℤq k ∈ [K]



[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

    
[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q

1. Server 1 samples  where  
independently and broadcasts it to other servers

r1, …, rM ri
R ℤq

50

INTUITION:

We will create a degree two polynomial  such that if  is 
not a root, then the only way to 0 out this polynomial is to 
have a single non zero entry equal to 1.

The cheating client does not know the values of  thus with 

probability  fails to pass to the test

p( ⃗r ) ⃗r

⃗r

2
q

Defending Against Malicious Clients And Servers

r1, …, rM

r1, …, rM

r1, …, rM

 where  and  αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

Total of  public commitmentsKM



[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

    
[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q

51

r1, …, rM

r1, …, rM

r1, …, rM

 where  and  αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

u1 =
M

∑
j=1

rit1j w1 =
M

∑
j=1

r2
i t1j

u2 w2

u3

w3

Defending Against Malicious Clients And Servers

New messages



[x]2 ∈ ℤM
q

t2 ∈ ℤM
q

    
[x]3 ∈ ℤM

q
t3 ∈ ℤM

q

[x]1 ∈ ℤM
q

t1 ∈ ℤM
q
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Defending Against Malicious Clients
r1, …, rM

r1, …, rM

r1, …, rM

 where  and  αij = Com([xj]i, tij) i ∈ [K] j ∈ [M]

z1 =
M

∑
j=1

ri[xj]1 z*1 =
M

∑
j=1

r2
i [xj]1

z2 z*2

z3

z*3

u1 =
M

∑
j=1

rit1j w1 =
M

∑
j=1

r2
i t1j

u2 w2

u3

w3

BROADCAST
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Defending Against Malicious Clients And Servers
Each server receives from Server  : k zk, z*k , uk, wk

If this test fails — Server aborts the 
protocol and declares that the protocol has 
been tampered with

If this test passes — Servers have not 
cheated so far. Next, check if client input is 
well formed

Check if  where  and z2 − z* = 0 z =
K

∑
k=1

zk z* =
K

∑
k=1

z*k
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Theorem
Let represent an honest client's input and  denote the deterministic function 
that checks if . Let  refer to the protocol described earlier

Then  securely computes  with abort in the presence of static covert 
adversary with -deterrent, where . 

⃗v fverify⃗v ∈ V πsketch

πsketch f
ρ ρ = 1 − 𝙰𝚍𝚟𝒜(DLog) ≈ 1

(a) (b)
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Proof Sketch
• The issue with the original sketching proof was that the server could tamper with 

user inputs, and therefore infer information about users inputs. 


• 1. So if we could just detect if they have tampered with the inputs we would be 
good. Furthermore, we don’t want lying clients saying their inputs were tampered 
with when in fact they were not. 


• 2. By committing to their inputs, the clients cannot later change their mind about 
their inputs. 


• 3. The homomorphic property of our commitment scheme ensures that when the 
servers broadcast their linear sketch output, the only way to get the authentication 
test to align — is to break the binding property of the commitment scheme.
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Verifiable Noise Generation

• The only inputs included are honest inputs. Note if we did not need DP. 
We are done! We can use the commitments to verify that the servers 
aggregate their shares correctly.

Committed Voting:

Clients send input 
shares to servers

Active Verifying:

Servers collaboratively 
verify that the input is 
legal

Verifiable Aggregating 

n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi

?
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Verifiable But Private Noise
n

∑
i=1

xi + The actual random value of the noise should remain private 
to everyone. 

As the total noise is secret, any server could just use adversarial noise and the other servers have no way of 
verifying what the other malicious server did. 

So we must design a protocol that still preserves the secrecy of noise while ensuring that any party that adds 
malicious noise gets caught

Challenge:

Desired Outcome
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Binomial Mechanism
The binomial distribution is  smooth

Ghazi, B., Golowich, N., Kumar, R., Pagh, R. and Velingker, A., 2021, October. On the power of multiple anonymous messages: Frequency estimation and 
selection in the shuffle model of differential privacy.

(ϵ, δ, k)

 Fix  and , then, the additive mechanism using  results in -differentially 

private -bin histograms where .

η > 30 0 ≤ δ ≤ o( 1
η ) 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,

1
2

) (ϵ, δ)

M ϵ = 10 1
η ln 2

δ

As a direct consequence of the results of Ghazi et al.

Thus if we could guarantee that the servers added  noise to the output of the protocol we would get DP.𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)
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A Well Known Fact
• Given a bit sampled from any arbitrary 

• And given 

•  is guaranteed to be 

bi ∈ {0,1} 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(𝚙)
ci ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)

zi = ci ⊕ bi zi ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)

IDEA: If we could generate verifiable public randomness, then we could ensure that regardless of what 
the an actor does, the final distribution is DP suitable. 



Ideal Morra
• Each party  simultaneously samples a value from  

uniformly at random and then broadcast their sampled values to each 
other. 


• As long as a single party does this sampling honestly, the sum of 

their values  is also a uniformly random value 

sampled from 


•

k ak
R ℤq

(
K

∑
k=1

ak) mod q

ℤq

a1
R ℤqa2

R ℤq

a3
R ℤq

We now have a way to generate public randomness 
even in presence of malicious actors. 

60
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Ideal Morra

a1
R ℤqa2

R ℤq

a3
R ℤq

There is no practical way to guarantee that they will all sample these values at exactly the same time. If a malicious 
party sees the output of an honest party, they can adjust their value.

• Each party  simultaneously samples a value from  
uniformly at random and then broadcast their sampled values to each 
other. 


• As long as a single party does this sampling honestly, the sum of 

their values  is also a uniformly random value 

sampled from 


•

k ak
R ℤq

(
K

∑
k=1

ak) mod q

ℤq
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Real Morra: First Commit Then Reveal
• Each party  samples a value from  uniformly 

at random. 


• They then broadcast a commitment of this value to all 
other parties.


• Once all commitments have been revealed, the 
parties reveal their random values in any order. 


• With each reveal, each party checks whether the  
released values open to the same commitment.  

•

k ak
R ℤq

a1
R ℤqa2

R ℤq

a3
R ℤq

 for all Com([ak, tk) k ∈ [k]
Formal simulator proof of security can be found in 

Blum M., 1983, Coin Flipping Over A Telephone A Protocol For Solving Impossible Problems
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
b1

R V

bη
R V

• The generating server samples  valid votes uniformly 
randomly.

η

….
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1

• Samples  valid votes uniformly randomly.

• Secret share them using verifiable committed secret 
sharing.

η

[b1]2, …, [bη]2

[b1]K, …, [bη]K

Shares are guaranteed to be 
well formed! 

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

All of them play Morra to 
Generate public randomness

 where 

 
for all  and 

c1, …, cη

cij ∼ 𝙱𝚎𝚛𝚗𝚘𝚞𝚕𝚕𝚒(1/2)
i ∈ [η] j ∈ [M]

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

We know for certain that  for all  and : 

The boolean circuit   is

 if 
 if 

bij ∈ {0,1} i ∈ [η] j ∈ [M]

zij = bij ⊕ cij

zij = bij cij = 0
zij = 1 − bij cij = 1

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

We know for certain that  for all  and : 

The boolean circuit   is

 if 
 if 

bij ∈ {0,1} i ∈ [η] j ∈ [M]

zij = bij ⊕ cij

zij = bij cij = 0
zij = 1 − bij cij = 1

 is public! Thus each server can adjust their shares accordinglycij

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

c1, …, cη

Operations for Server k

 if 

 if 

zij = bij cij = 0

[zij]k = 1 − [bij]k cij = 1

But HANG ON! If I change the shares, the commitments won’t align

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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Distributed Noise Generation Protocol 
n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
[b1]1, …, [bη]1 [b1]2, …, [bη]2

[b1]K, …, [bη]K

Operations for Server k

 if 

 if 

zij = bij cij = 0

[zij]k = 1 − [bij]k cij = 1

But HANG ON! If I change the shares, the commitments won’t align

Updates are linear — So commitments can be adjusted accordingly in ciphertext space.

Let , then α = Com(x, r) α−1 ⋅ (gh) = Com(1 − x,1 − r)

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q
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n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Server 1

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server K

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

Server 2
η

∑
i=1

[zi]1

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Broadcast

η

∑
i=1

[zi]2

η

∑
i=1

[zi]K

Use commitments to verify that every 
server, has broadcasted messages 
correctly

Servers Broadcast Their shares
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Aggregate

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Y1 = (
η

∑
i=1

k

∑
k=1

[zi]k)

The generating server is the only server that knows 
. All other servers operate on information 

theoretically private shares. 

But the generating server still knows the value for 
randomness — so the protocol is not private. 

b1, …, bη

Each coordinate of Y1 ∼ 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)

Attention

η

∑
i=1

[zi]1
η

∑
i=1

[zi]2

η

∑
i=1

[zi]K

Server 1

Server K

Server 2
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n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]K ∈ ℤM
q

n

∑
i=1

tiK ∈ ℤM
q

n

∑
i=1

[xi]1 ∈ ℤM
q

n

∑
i=1

ti1 ∈ ℤM
q

Yk = (
η

∑
i=1

k

∑
k=1

[zi]k)

Each server has a go at being the generating server, before broadcasting their shares. 
As 1 server is guaranteed to be semi-honest, the final sum of all the noise remains private

Server k

Server K

Server 1

Total noise: Y = Y1 + … + YK

Variance:  instead of  but  is a small number, so can be treated as a constant.
kη
4

η
4

k

η

∑
i=1

[zi]k
η

∑
i=1

[zi]1

η

∑
i=1

[zi]K

Each Server Takes A Turn To Be Generating 
Server
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In Summary: Verifiable DP Histograms

(Y1 + … + YK) +
n

∑
i=1

K

∑
k=1

[xi]k =
n

∑
i=1

xi + Y

Guaranteed to have  
copies of 

k

𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,0.5)

As long as 1 server is 
semi-honest, no server 
knows the value of YNoise and inputs are committed. 

Each broadcast is verifiable.
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Conclusion/Open Questions
• We have a protocol by which we get verified histogram protocols. 


• Open questions:  

• - Can we make variance independent of the number of servers 


• - Committments worked out because the protocol and the noise 
generation was linear, are there efficient methods for non-linear protocols. 


•

K
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Information-Theoretic Privacy

• If we could guarantee that number of bad servers was strictly less than , 

then via robust secret sharing, using Reed-Solomon Codes, we could get 
rid of the need for commitments. 


•

K
3
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