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Motivating Problem: Counting

1 2 3 4

The local government of Wolvercote, a small 
village in Oxfordshire want to know if they 
should change public healthcare policy.

In order to gauge public opinion they 
conduct a survey over the population of the 
village. 

1: Mandatory Vaccination
2: Increase Pay Towards Healthcare workers
3: Decrease Taxes Towards Healthcare 
4: Increase Taxes Towards Healthcare  0 0 1 0

Each resident is 
asked to vote for 
a single policy 
only

1 2 3 4
Survey Question

xii
2



An Ideal Solution
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A New Person Moves in
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Randomness To The Rescue

❖ In this scenario, there is no deterministic algorithm that can help prevent 
information leakage about the n'th users value.

❖ Thus we MUST randomness to obfuscate information about the new user.  



-Differential Privacy (DP)(ϵ, δ)
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x1 … xn−1 xnX ∈ 𝒳n

Q

The output of M is a random 
value sampled according to 

, where the randomness 
comes from the 's private local 
randomness. 

Thus  defines a 
probability distribution over 

𝖬(X, Q)
𝖬

𝖬(X, Q)
𝒴

      

 𝖬 Q(x1, …, xn)

Local random tape

An algorithm  for releasing 𝖬 : 𝒳n × 𝒬 → 𝒴 Q(X)



-Differential Privacy (DP)(ϵ, δ)
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x1 … xn−1 xnX ∈ 𝒳n

Q

x1 … xn−1 xn
For any neighbouring datasets   i.e
datasets that differ by just one element

X ∼ X′ X ∈ 𝒳n

X′ ∈ 𝒳n x1 … xn−1 xn

 is said to be Differentially Private if for any subset  𝖬 (ϵ, δ)− T ⊆ 𝒴

      

 𝖬 Q(x1, …, xn)

Local random tape

An algorithm  for releasing 𝖬 : 𝒳n × 𝒬 → 𝒴 Q(X)



An algorithm  for releasing 𝖬 : 𝒳n × 𝒬 → 𝒴 Q(X)

 is said to be Differentially Private if for any subset  𝖬 (ϵ, δ)− T ⊆ 𝒴

-Differential Privacy (DP)(ϵ, δ)
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 𝖬 Q(x1, …, xn)

Local random tapex1 … xn−1 xnX ∈ 𝒳n

Q

x1 … xn−1 xn
For any neighbouring datasets   i.e
datasets that differ by just one element

X ∼ X′ X ∈ 𝒳n

X′ ∈ 𝒳n x1 … xn−1 xn

M(X, Q)
Pr
y $  

[y ∈ T]
M(X′ , Q)

Pr
y $  

[y ∈ T] +δ≤ eϵ



Understanding The Definition: Bayesian Perspective

Computationally 
unbounded algorithm, that 
knows all values in  
except 

X
x1

X′ ∈ 𝒳n x1 … xn−1 xn

Pr[x1 = x]

Adversaries prior belief about x1

Pr[x1 = x |𝖬(X, Q) = y]

Adversaries updated posterior 
about  now that it has seen a 
sample  from 

x1
y 𝖬(X, Q)



Understanding The Definition: Bayesian Perspective

Computationally 
unbounded algorithm, that 
knows all values in  
except 

X
x1

X′ ∈ 𝒳n x1 … xn−1 xn

Pr[x1 = x]

Adversaries prior belief about x1

Pr[x1 = x |𝖬(X, Q) = y]

Adversaries updated posterior 
about  now that it has seen a 
sample  from 

x1
y 𝖬(X, Q)If  is DP, then with probability alteast 𝖬 (ϵ, δ)− 1 − δ

𝖳𝖵(D1, D2) ≤ ϵ



Utility Of A DP Algorithm

𝖤𝗋𝗋𝗈𝗋 = 𝔼 ̂y $ 𝖬(X,Q)[d( ̂y, y)]

An algorithm  for releasing a DP version of  where  is a metric space we define utility 𝖬 : 𝒳n × Q → 𝒴 y = Q(X) (𝒴, d)

d(x, y) = | |x − y | |1

d(x, y) = | |x − y | |2
2

Candidate metrics

d(x, y) = | |x − y | |∞

𝒴 = ℝd

𝒴 = ℤd
q

If we draw a sample from , then on 
average how far is that sample from the 
true untampered answer. 

𝖬(X, Q)
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DP Counting
Q(x1, …, xn) =
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+

ϵ =
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ln
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δ

ϵ = 2 ln
1.25
δσ2

ϵ =
1
b

, δ = 0
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Back To Our Ideal World
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What If We Cannot Trust The Server ?
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What Do We Want

❖ We want outputs to be differentially private

❖ However, we also want the output to be reliable i.e, by that we mean any 
error in the output must come as a result of DP noise and that only. 



Client Server Verifiable DP
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…

X = (x1, …, xn), ⃗z, ⃗rp

Public Bulletin Board

Clients send inputs to the 
server as usual, but 
additionally they publish 
information to a public 
bulletin board

⃗z, ⃗rv⃗z

Prover 
(P)

Verifier
(V)

P(X, ⃗z, ⃗rp) ↔ V( ⃗z, ⃗rv)

x1

xixn

All participants are PPT Turing Machines.



Verifiable DP
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…

X = (x1, …, xn), ⃗z, ⃗rp

Public Bulletin Board

Prover interacts with the 
verifier over multiple 
rounds and finally outputs 
.y

⃗z, ⃗rv⃗z

Prover 
(P)

Verifier
(V)

P(X, ⃗z, ⃗rp) ↔ V( ⃗z, ⃗rv)

𝚅𝚎𝚛𝚒𝚏𝚢(P ↔ V ) ∈ {0,1}

The verifier looks at the 
board and the messages 
either accepts or rejects the 
claim that y $ M(X, Q)

κ ∈ ℕ
Security Parameter

x1

xixn

Typically, the size of the input in bits.



Verifiable DP
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…

X = (x1, …, xn), ⃗z, ⃗rp

Public Bulletin Board

⃗z, ⃗rv⃗z

Prover 
(P)

Verifier
(V)

P(X, ⃗z, ⃗rp) ↔ V( ⃗z, ⃗rv)

x1

xixn

Completeness:

If both the prover and the verifier are 
honest, then  and y $ M(X, Q)

Pr[𝚅𝚎𝚛𝚒𝚏𝚢(P ↔ V ) = 1] = 1



Verifiable DP
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…

X = (x1, …, xn), ⃗z, ⃗rp

Public Bulletin Board

⃗z, ⃗rv⃗z
Verifier
(V)

P(X, ⃗z, ⃗rp) ↔ V( ⃗z, ⃗rv)

x1

xixn

Soundness

For any cheating prover  that samples 
 from a distribution  such that 

P*
y 𝒟
𝖳𝖵(𝖬(X, Q), 𝒟) > 0

Pr[𝚅𝚎𝚛𝚒𝚏𝚢(P* ↔ V ) = 1] ≤ 1/3

Prover 
( )P*



Verifiable DP
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…

X = (x1, …, xn), ⃗z, ⃗rp

Public Bulletin Board

⃗z, ⃗rv⃗z

Prover 
(P)

P(X, ⃗z, ⃗rp) ↔ V( ⃗z, ⃗rv)

x1

xixn

Cheating Verifier Zero Knowledge

When , for any cheating 
verifier  there exists a PPT algorithm

                 that has oracle access to   

y $ M(X, Q)
V*

𝚂𝚒𝚖 V*

𝚅𝚒𝚎𝚠[P ↔ V*] ≡ 𝚂𝚒𝚖( ⃗z, ⃗rv, y)

Verifier
( )V*

𝖬(X, Q)

y



The Soundness/ZK conflict

X, ⃗z, ⃗rp ⃗z, ⃗rv

Prover (P) Verifier(V)

The output is a function of the provers local 
randomness. However the prover cannot ever reveal 
this randomness to the verifier as it would compromise 
DP. 

The prover must find a way to prove that  was 
sampled from the right distribution without ever 
revealing any information about .

However, we also need some shared information (like 
say public randomness) for the verifier to be able to 
confident that  is sampled correctly.

Z

Z

Z

Q(x1, …, xn) Z M(X; Q)+y =

*Not to be confused with Proof Of Knowledge

Z $ 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)

** The noise used is not pseudorandom noise either
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THE HEART OF THE PROBLEM



Some Crypto Prelims



Commitments
Two stage interactive protocol between a Committer and a Receiver 

Committer Receiver

Commit Phase

Reveal Phase

23



Commit Phase
Committer Receiver

Key Message Locked Box/
Commitment

Hiding Property: The 
Receiver cannot tell 
what is inside the box. 
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Reveal Phase
Committer Receiver

Key Message Locked Box/
Commitment

Binding Property: The 
sender cannot find a 
different key, message pair to 
open the box correctly

Use key to open box  and 
reveal message and check

=
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Example: Pedersen Commitments

Key Message Locked Box/
Commitment

26

Let  be a prime order cyclic group with 
operation  and  and  be 
generators.

𝔾q
+ g ∈ 𝔾q h ∈ 𝔾q

r $ ℤq x ∈ ℤq c = gxhr

 is statistically hiding and computationally bindingc



Homomorphic Commitments

Key Message Locked Box/
Commitment

Key Message Locked Box/
Commitment

+ =

+ =

+ =

The combined keys open 
the combined boxes
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Pedersen Commitments Are Homomorphic

r1 x1 c1 = gx1hr1

r2 x2 c2 = gx2hr2

+ =

+ =

+ =

The combined keys open 
the combined boxes

28

c1 = gx1hr1 c2 = gx2hr2 c1 + c2 = gx1+x2hr1+r2

r1 + r2

x1 + x2



Disjunctive OR Arguments
Committer Receiver

Key Message Locked Box/
Commitment

The prover can convince 
the receiver that the 
message is either 0 or 1 
without revealing which 
one it is
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Quick Recap

❖ We have commitments that are homomorphic and support OR arguments.



Main Protocol  

…

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)

Server/Prover
Citizens of Wolvercote

Bulletin Board

Citizen 1’s private vote

Citizen ’s private key used to 
create commitments

n
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Non Private Counting Is Was

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)Server/Prover

Citizen 1’s private vote

Citizen ’s private key used to 
create commitments

n

+

+

+
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Non Private Counting Is Was

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)Server/Prover

Citizen 1’s private vote

Citizen ’s private key used to 
create commitments

n

+

+

+
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Non Private Counting Is Was

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)Server/Prover

Citizen 1’s private vote

Citizen ’s private key used to 
create commitments

n

+

+

+

Check if key opens locked box properly.
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Verifiable DP counting - Essence

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)Server/Prover

+

+

+

Check if key opens locked box properly.

+

+

Z $ 𝙱𝚒𝚗𝚘𝚖𝚒𝚊𝚕(η,
1
2

)

Somehow need to 
create public 
commitment to Z

+
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A Simple Trick
Server/Prover

 private
 bits
η

Note we cannot say anything about 
the distribution from which these 
bits are being sampled.

All the verifier knows is that these 
boxes are a commitment to a bit.

v1

vη

s1

sη

Verifier

36

 private 
random 
keys

η



Server/Prover

Sample  bitsη

Verifier generates  public unbiased coinsη

b1 bη
s1

sη

v1

vη

Verifier
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A Simple Trick



The Final Trick
Server/Prover

Sample  bitsη

b1 bη

If  then set bi = 1 vi = 1 − vi

v1

vη

s1

sη

Otherwise, leave  unchanged.vi

Verifier

38

Verifier generates  public unbiased coinsη



The Final Trick
Server/Prover

Sample  bitsη

b1 bη

If  then set  and bi = 1 vi = 1 − vi si = 1 − si

v1

vη

s1

sη

Otherwise, leave  and  unchanged.vi si

Observation 1: 
The updates are LINEAR conditioned on  bi

Without ever seeing  the verifier 
can update 

vi

𝙲𝚘𝚖(vi, si) = 𝙲𝚘𝚖(1,1) − 𝙲𝚘𝚖(vi, si)

Verifier
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Verifier generates  public unbiased coinsη



The Final Trick
Server/Prover

Sample  bitsη

b1 bη

If  then set bi = 1 vi = 1 − vi

v1

vη

s1

sη

Otherwise, leave  unchanged.vi

Observation 2: 
The above conditional statement is equivalent to 
vi = vi ⊕ bi

This forces the provers bit to have the 
correct distribution.

Verifier
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Verifier generates  public unbiased coinsη



Final Check

(x1, r1)…, (xn, rn)

𝙲𝚘𝚖(x1, r1), …, 𝙲𝚘𝚖(xn, rn)Server/Prover

+

+

+

Check if key opens locked box properly.

+

+

η

∑
i=1

vi

+

𝙲𝚘𝚖(
η

∑
i=1

vi,
η

∑
i=1

si)

η

∑
i=1

si

Verifier
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x1 … xn−1 xn

For any neighbouring datasets   i.e
datasets that differ by just one element

X ∼ X′ 

X ∈ 𝒳n

X′ ∈ 𝒳n x1 … xn−1 xn

       M

An algorithm  for releasing M : 𝒳n × Q → 𝒴 Q(X)

Q(x1, …, xn)
M(X, Q)

M(X′ , Q)

 is said to be Differentially Private if for any subset  M (ϵ, δ)− T ⊆ 𝒴

M(X, Q)Pr[D( ∈ T) = 1] M(X′ , Q)≤ + δeϵ

-Computational DP(ϵ, δ)

Polynomially bounded algorithm D

OPEN PROBLEM
Is there a significant advantage if we 
relaxed this to be computational 
indistinguishability instead of 
statistical ?

Pr[D( ∈ T) = 1]

M(X, Q)

M(X′ , Q)
????

Was  released or 
was it 

X
X′ 
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Prior Separation Attempts
If  and utility is measured in terms 
of the  norm then there is NO advantage 
to relaxing privacy. 

𝒴 ⊆ ℝd

Lp

Thus  needs to be a more complex structure like a circuit, a graph or a proof. 𝒴

GIKKM23-Arxiv
Separating Computational and 
Statistical Differential Privacy 

(Under Plausible Assumptions)

GKY11- TCC
Limits of computational differential 
privacy in the client server settingu(X, M(X, Q) = | |M(X, Q) − Q(X) | |p

BV16 - TCC
 Separating Computational and 
Statistical Differential Privacy in 

the Client-Server Model

43

An algorithm  for releasing M : 𝒳n × Q → 𝒴 Q(X)

https://link.springer.com/chapter/10.1007/978-3-642-19571-6_25
https://link.springer.com/chapter/10.1007/978-3-662-53641-4_23


Where’s the Separation ?
Server/Prover

Sample  bitsη

Generate  public unbiased coins by playing Morraη

b1 bη
s1

sη

v1

vη

A key component in verifying the servers DP noise was 
to generate unbiased public randomness.

Verifier
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Where’s the Separation ?
Server/Prover

Sample  bitsη

Generate  public unbiased coins by playing Morraη

b1 bη
s1

sη

v1

vη

A key component in verifying the servers DP noise was 
to generate unbiased public randomness.

Coin-flipping  One way Functions Commitments⟹ ⟹

Verifier

Coin Flipping with Constant Bias Implies One way Functions - 
HO14
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Coin Flipping with any Constant Bias Implies One way 
Functions - BHT21



Questions



Public Coin Flipping (Morra)

a1
R ℤqa2

R ℤq

a3
R ℤq

1. Each party samples a random value from 

2. Each party broadcasts a commitment to the 
value.

3. Each party opens their commitments in the 
reverse order in which they broadcasted 
commitments. 

4. Everyone checks all the opens are good. 

5.

6. If , we set 

7. Else 

ℤq

b̃ =
K

∑
i=1

ai mod q

b̃ ≤
q
2

b = 1

b = 0
As long as a single party is honest, this protocol generates an 
unbiased bit b
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