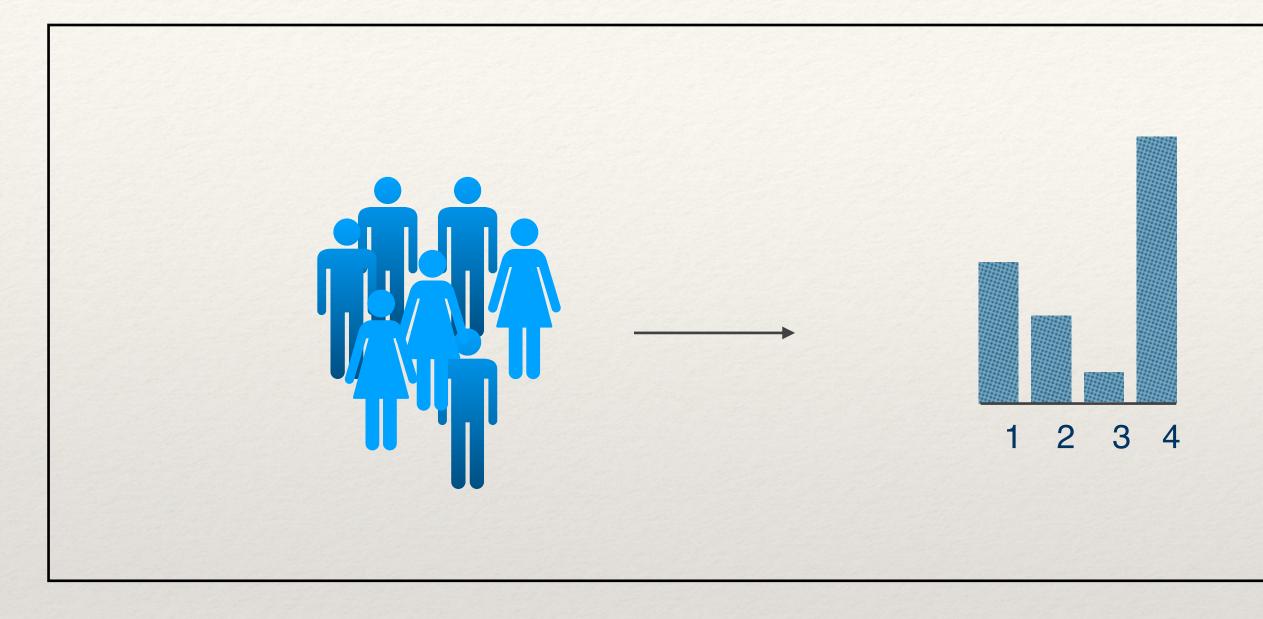
CCS 2023, Copenhagen, Denmark

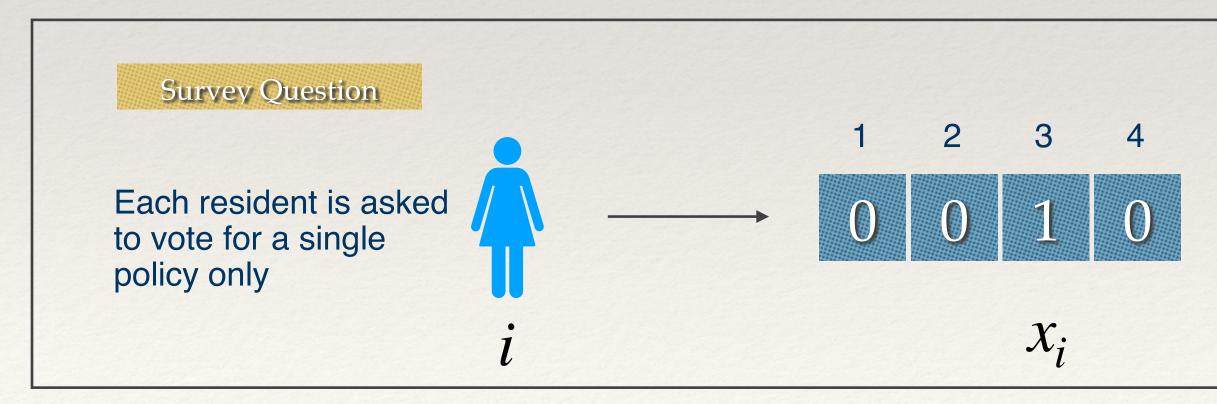
Interactive Proofs For Differentially Private Counting

¹ University Of Warwick ² Meta AI

Ari Biswas¹ Graham Cormode ^{1, 2}

Motivating Problem: Counting

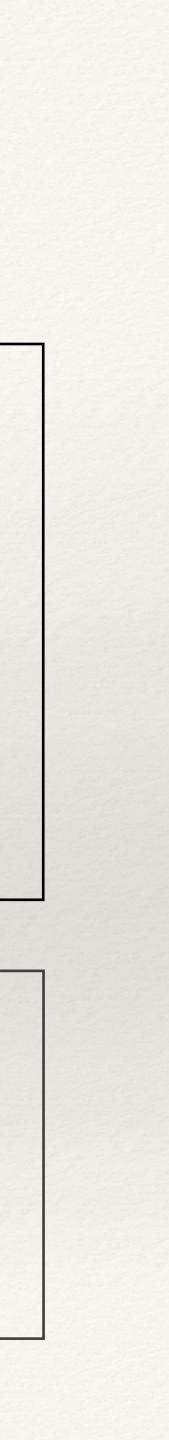




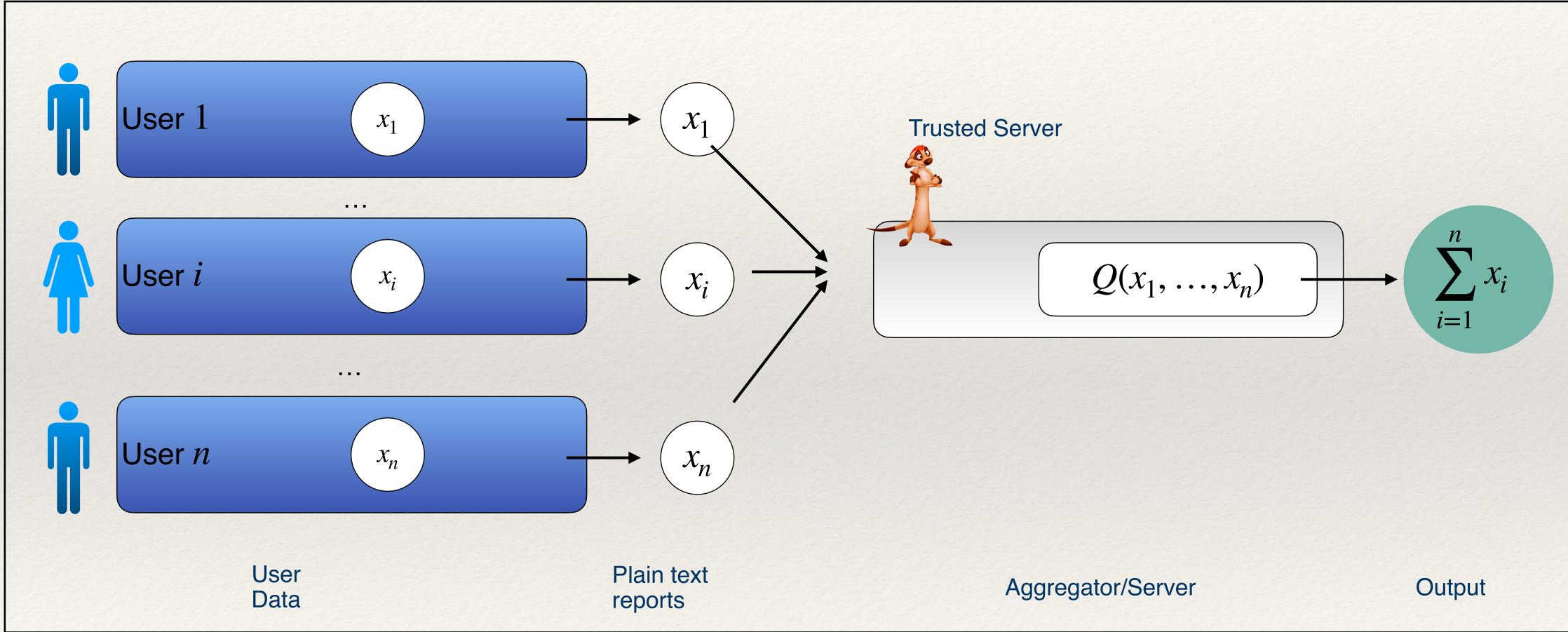
The local government of Wolvercote, a small village in Oxfordshire want to know if they should change public healthcare policy.

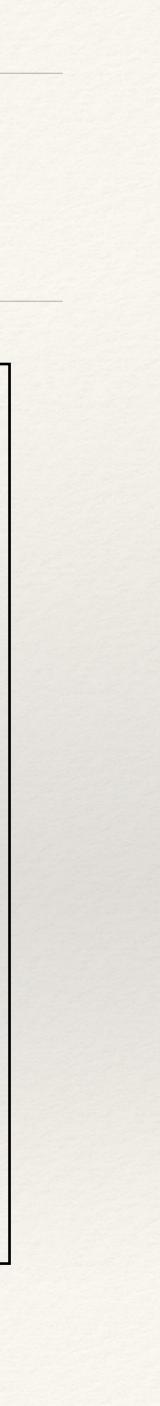
In order to gauge public opinion they conduct a survey over the population of the village.

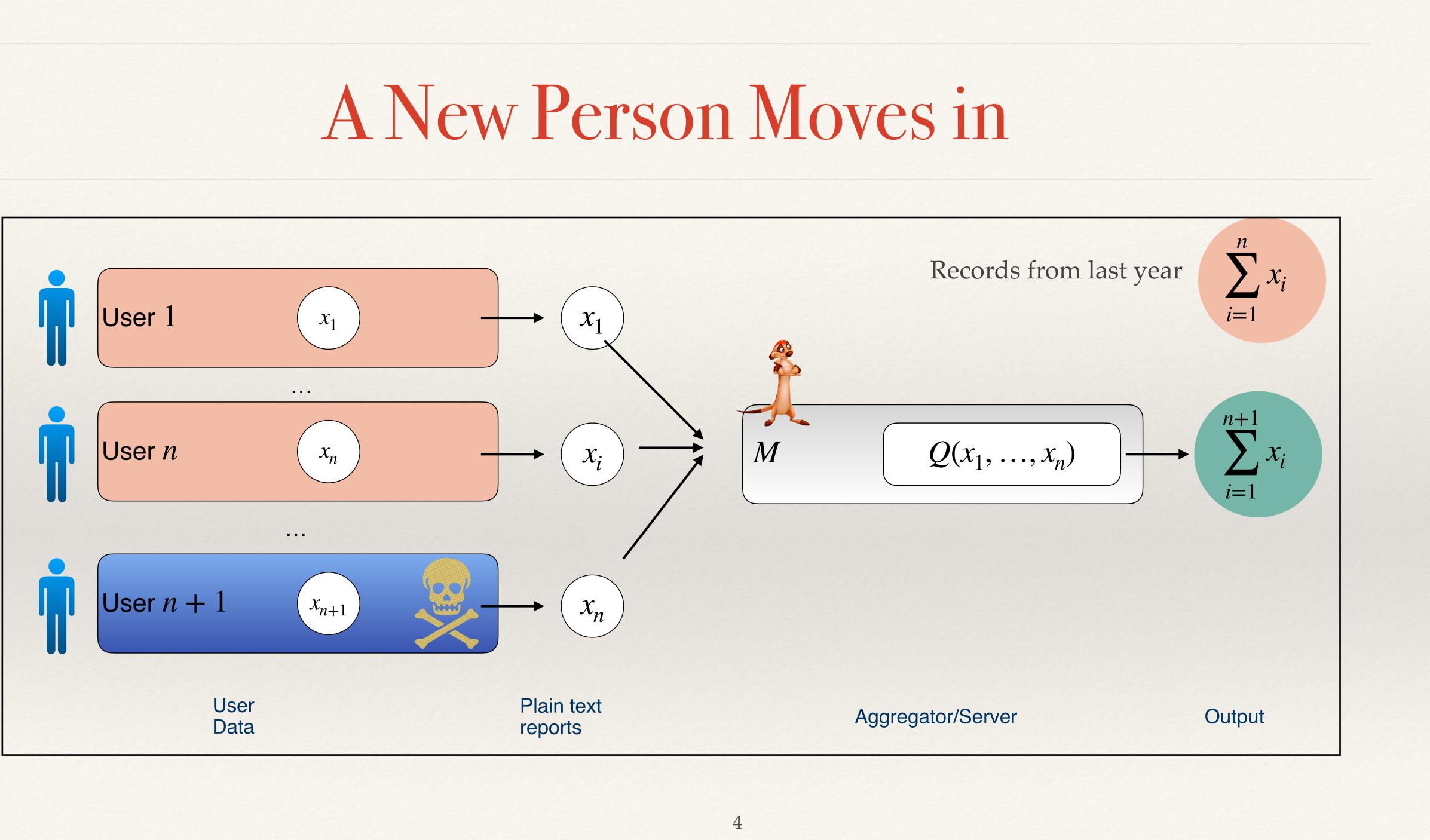
- 1: Mandatory Vaccination
- 2: Increase Pay Towards Healthcare workers3: Decrease Taxes Towards Healthcare
- 4: Increase Taxes Towards Healthcare



An Ideal Solution







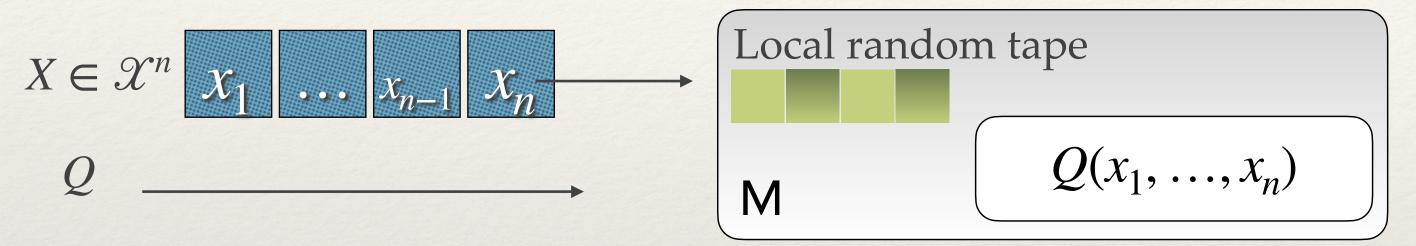
Randomness To The Rescue

- information leakage about the n'th users value.

* In this scenario, there is no deterministic algorithm that can help prevent

* Thus we **MUST** randomness to obfuscate information about the new user.

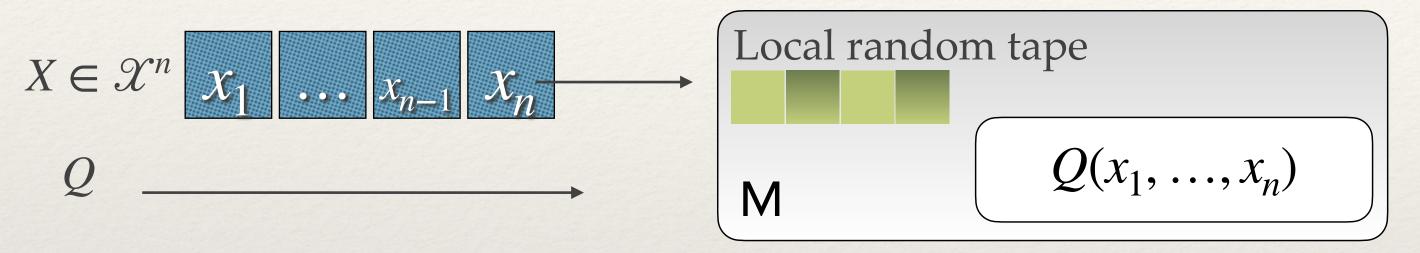
An algorithm M : $\mathcal{X}^n \times \mathcal{Q} \to \mathcal{Y}$ for releasing Q(X)



(ϵ, δ) -Differential Privacy (DP)

M(X, Q) Is a distribution

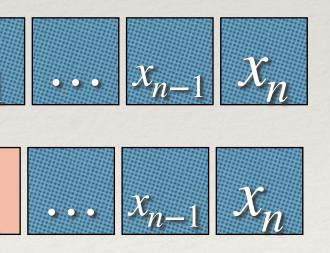
An algorithm M : $\mathcal{X}^n \times \mathcal{Q} \to \mathcal{Y}$ for releasing Q(X)



For any neighbouring datasets $X \sim X'$ i.e $X \in \mathcal{X}^n$ X_1 datasets that differ by just one element

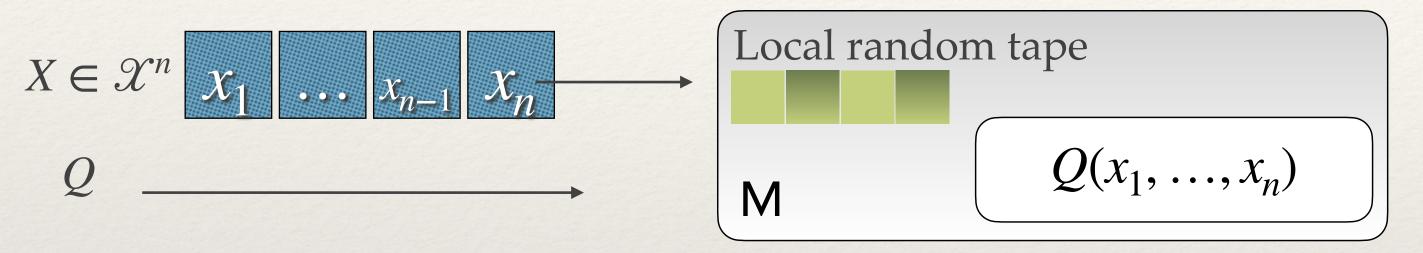
$$X' \in \mathcal{X}^n$$

(ϵ, δ) -Differential Privacy (DP)



7

An algorithm M : $\mathcal{X}^n \times \mathcal{Q} \to \mathcal{Y}$ for releasing Q(X)



M is said to be (ϵ, δ) -Differentially Private if for any subset $T \subseteq \mathcal{Y}$

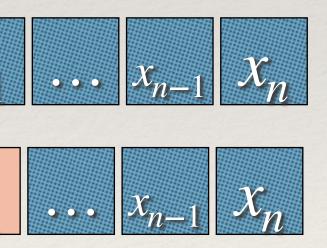
 $X' \in \mathcal{X}^n$

For any neighbouring datasets $X \sim X'$ i.e $X \in \mathcal{X}^n$ \mathcal{X}_{1} datasets that differ by just one element

$$\Pr[y \in T] \le e^{\epsilon} \Pr[y \in T] + \delta$$

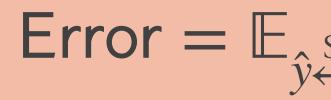
$$y \stackrel{\$}{\leftarrow} M(X, Q) \qquad y \stackrel{\$}{\leftarrow} M(X', Q)$$

(ϵ, δ) -Differential Privacy (DP)



Utility Of A DP Algorithm

An algorithm M : $\mathcal{X}^n \times Q \to \mathcal{Y}$ for releasing a DP version of y = Q(X) where (\mathcal{Y}, d) is a metric space we define utility

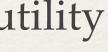


Candidate metrics

$$\mathcal{Y} = \mathbb{R}^d \qquad d(x, y) = x - y \qquad 1$$
$$\mathcal{Y} = \mathbb{Z}_q^d \qquad d(x, y) = x - y \qquad \frac{2}{2}$$
$$d(x, y) = x - y \qquad \infty$$

If we draw a sample from M(X, Q), then on average how far is that sample from the true untampered answer.

$$= M(X,Q) \left[d(\hat{y},y) \right]$$



$$DP Co$$

$$Q(x_1, \dots, x_n)$$

$$Q(x_1, \dots, x_n) + Laplace(b)$$

$$M$$

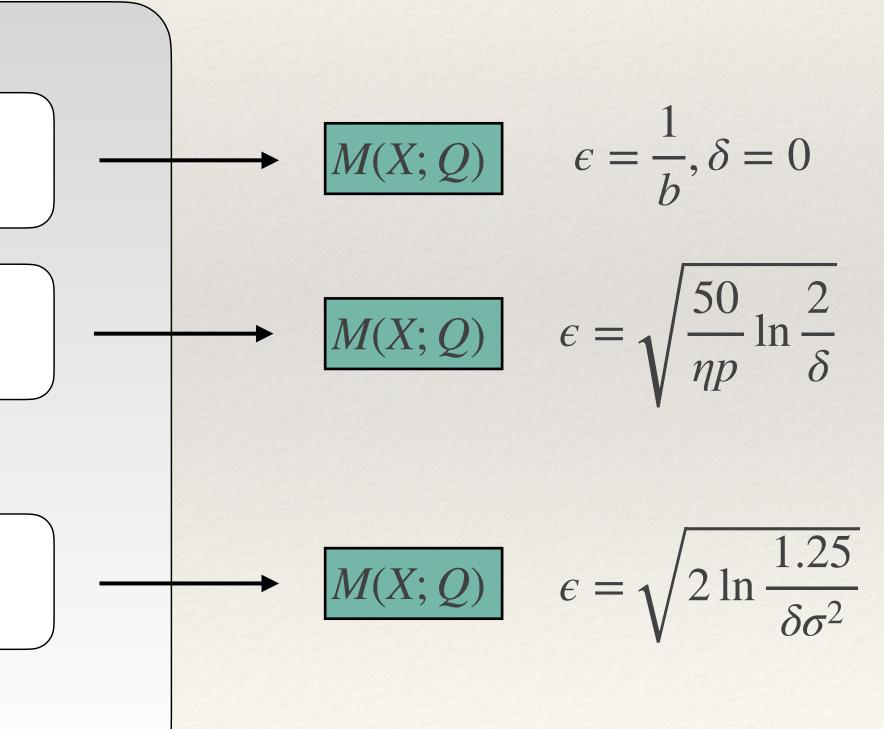
$$Q(x_1, \dots, x_n) + Binomial(\eta, p)$$

$$\dots$$

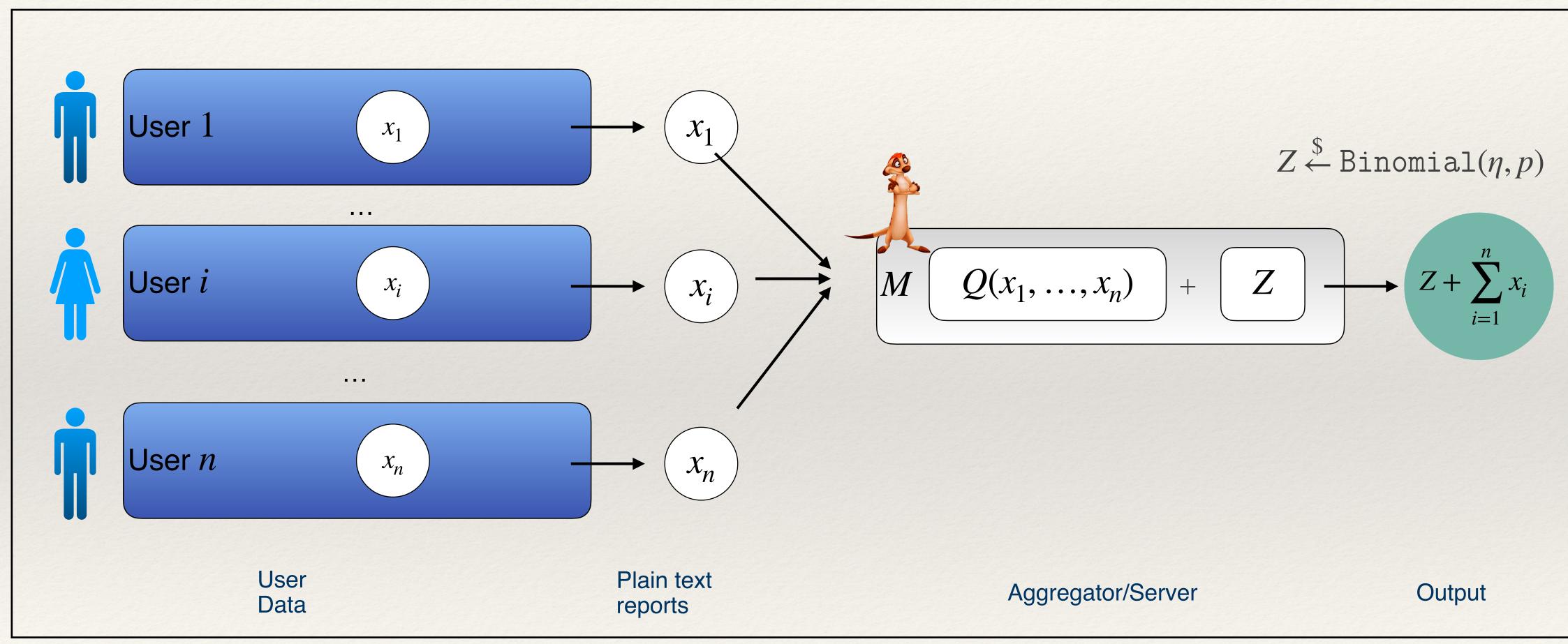
$$Q(x_1, \dots, x_n) + Gaussian(0, \sigma)$$

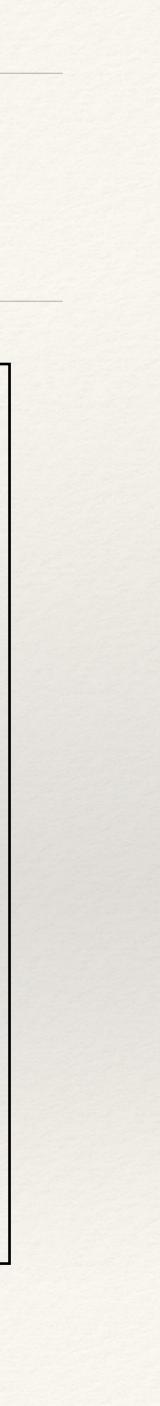
lounting

 $\int = \sum_{i=1}^{n} x_i$

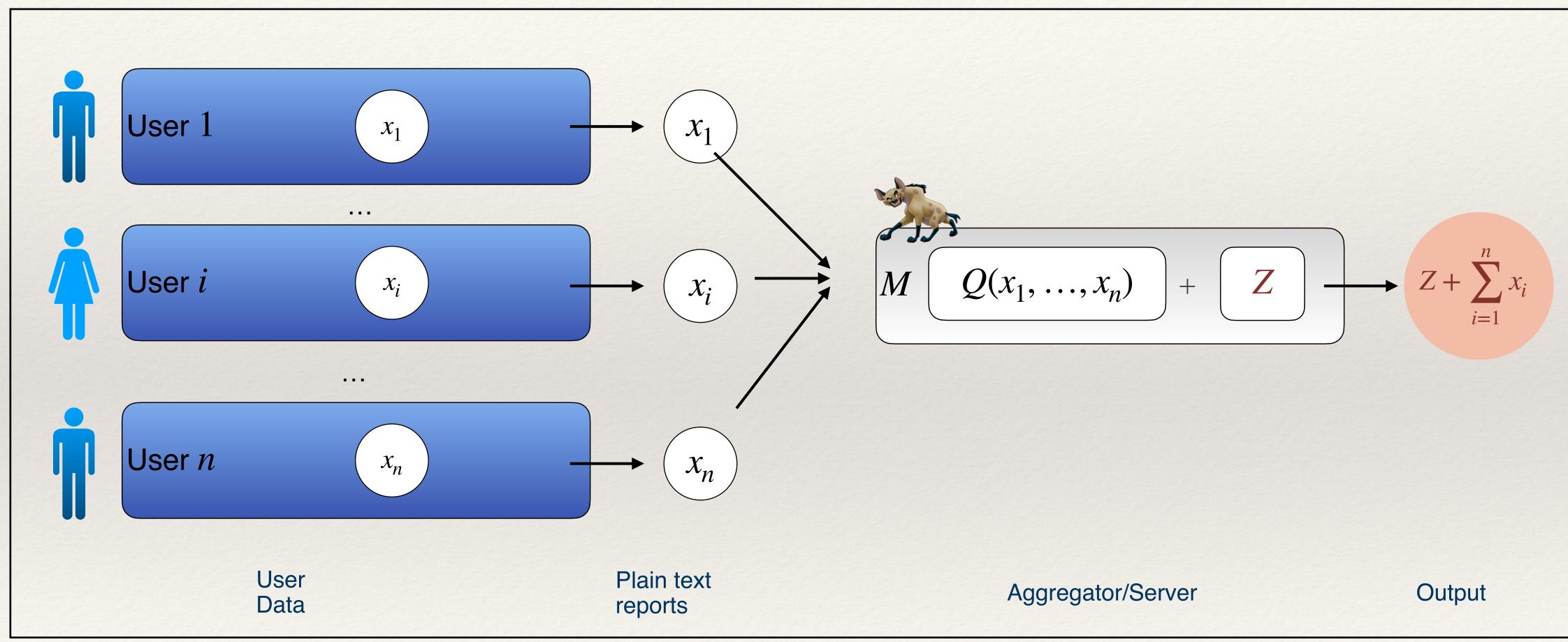


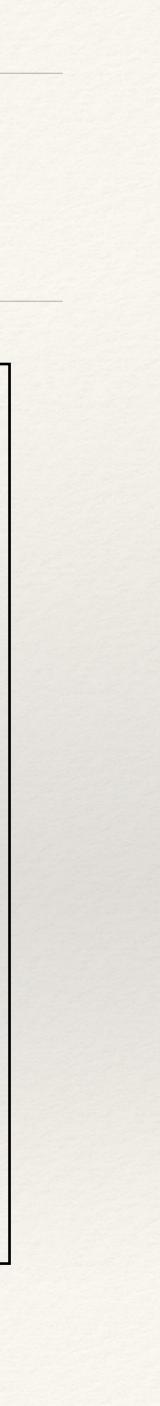
Back To Our Ideal World





What If We Cannot Trust The Server?





What Do We Want

- * We want outputs to be differentially private
- error in the output must come as a result of DP noise and that only.

* However, we also want the output to be <u>reliable</u> i.e, by that we mean any

Need Some Crypto

Two stage interactive protocol between a Committer and a Receiver

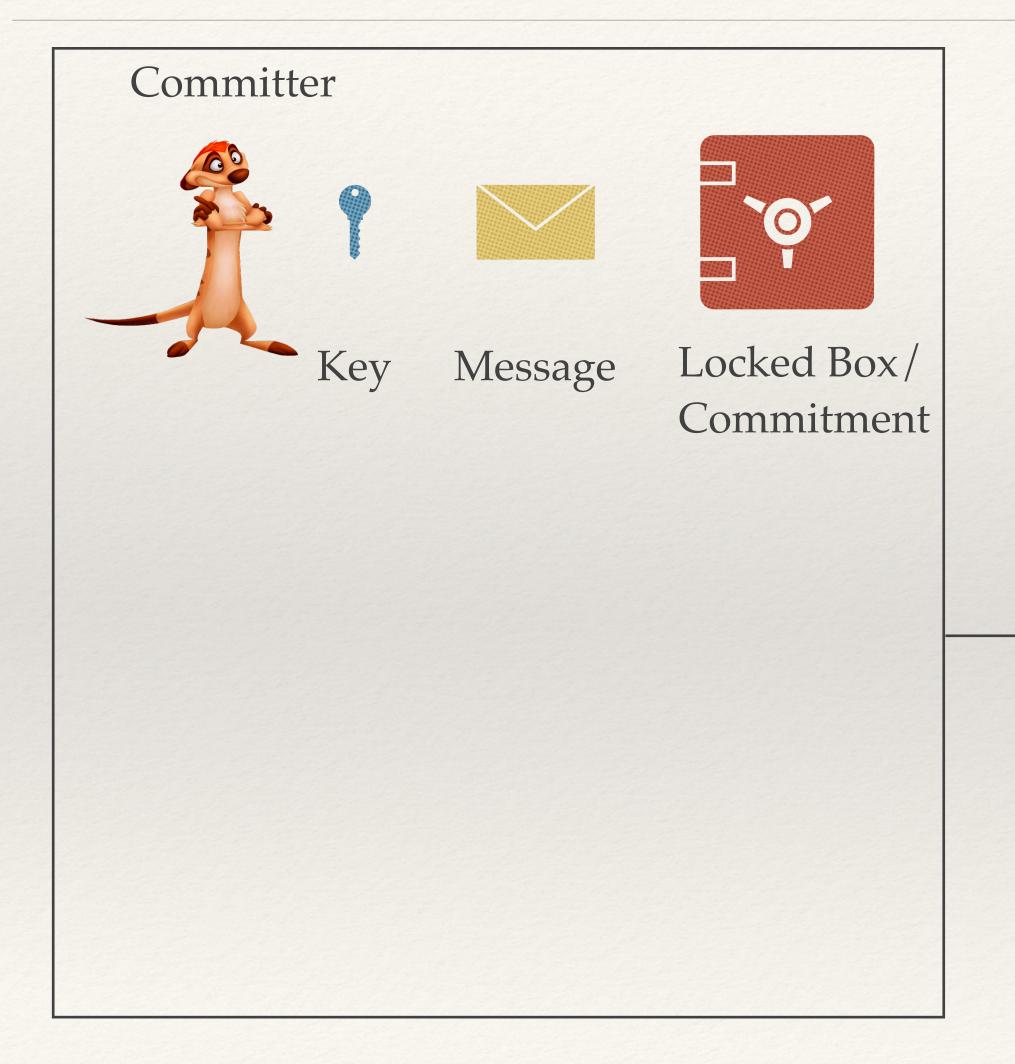
Commit Phase

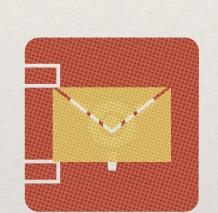
Committer

Reveal Phase

Commitments

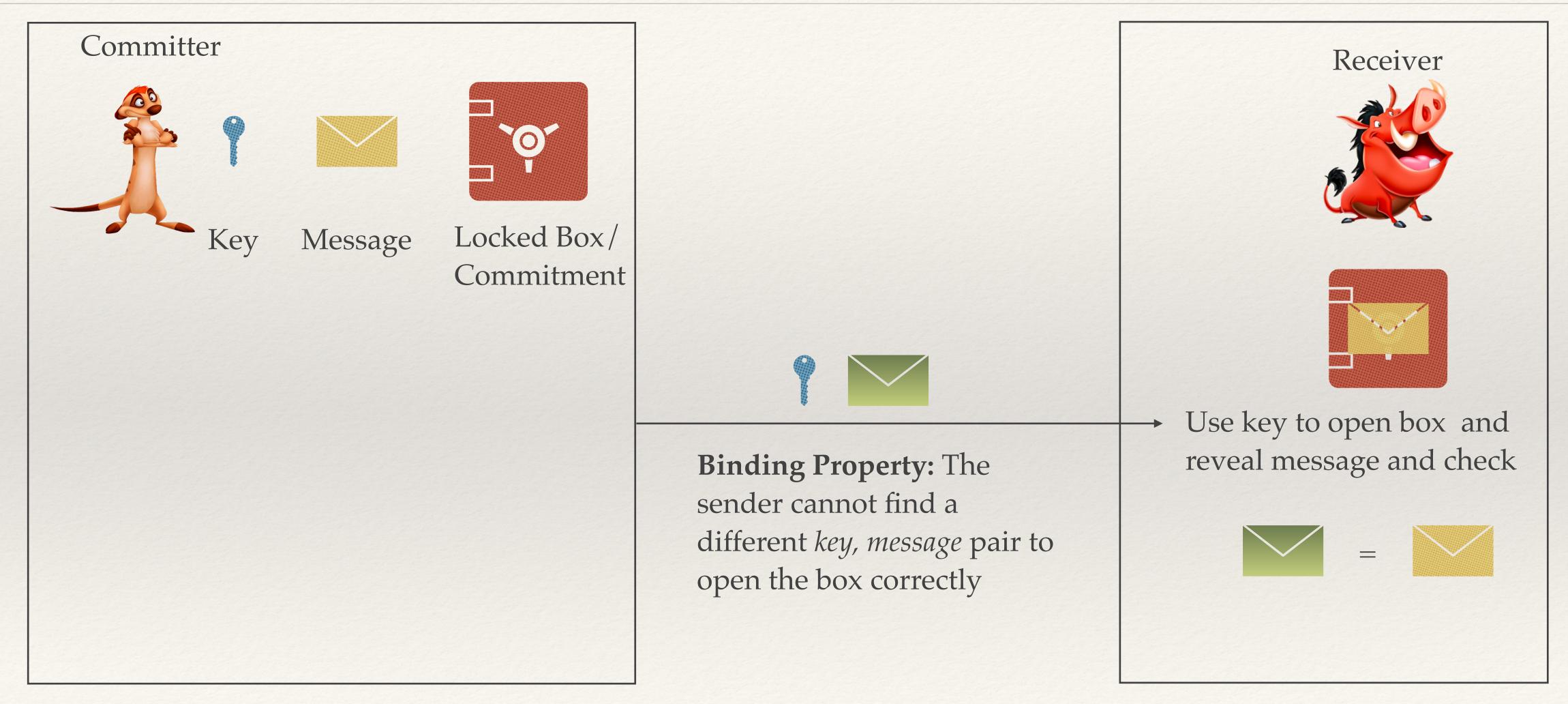
Commit Phase





Hiding Property: The Receiver cannot tell what is inside the box.

Reveal Phase

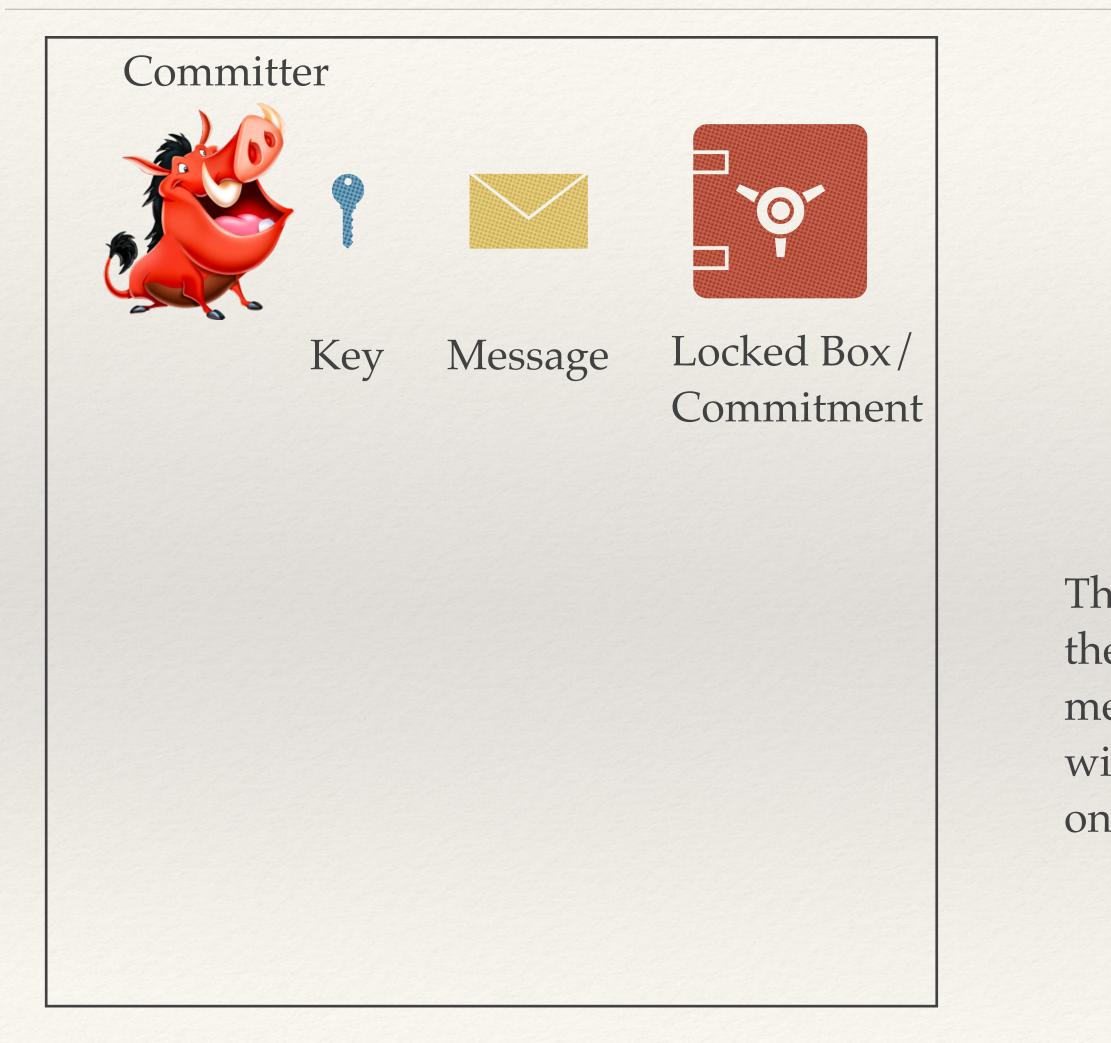


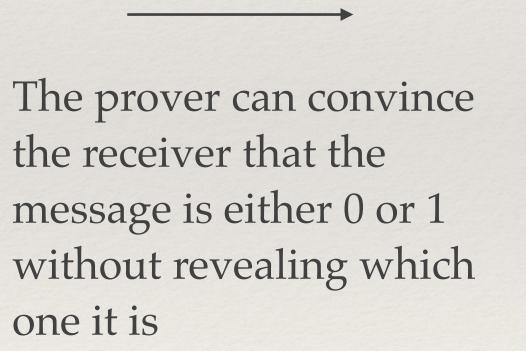
Homomorphic Commitments

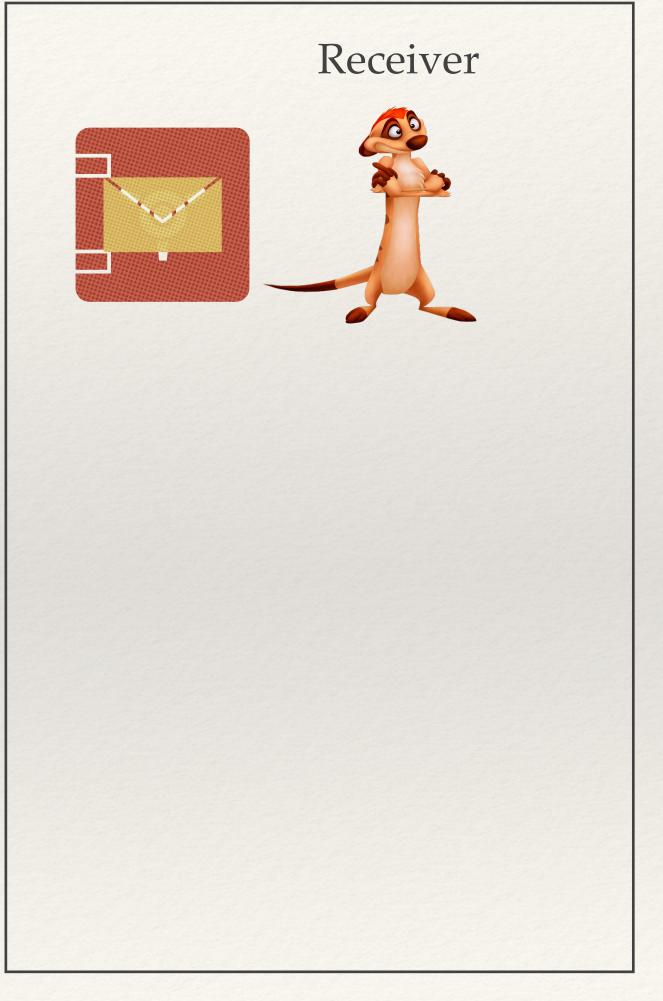


The combined keys open the combined boxes

Disjunctive OR Arguments

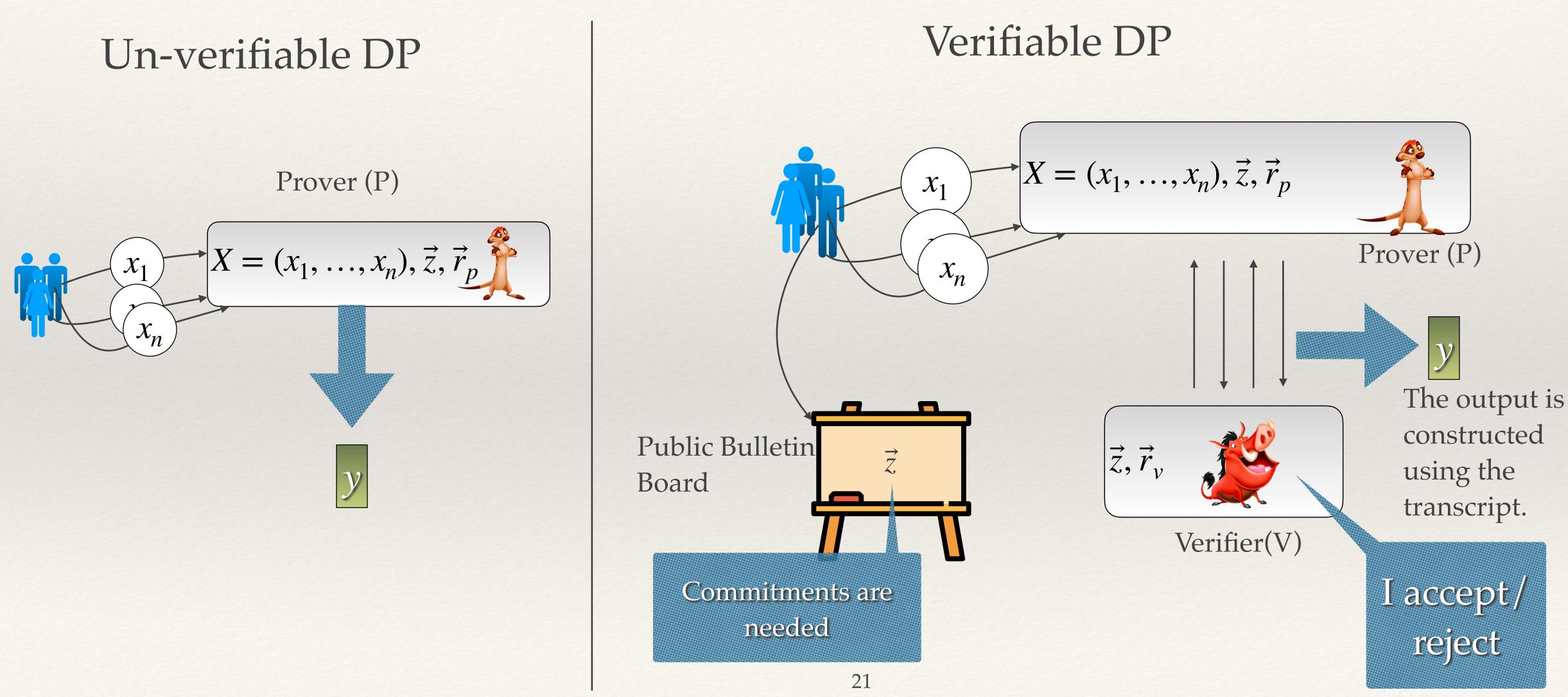






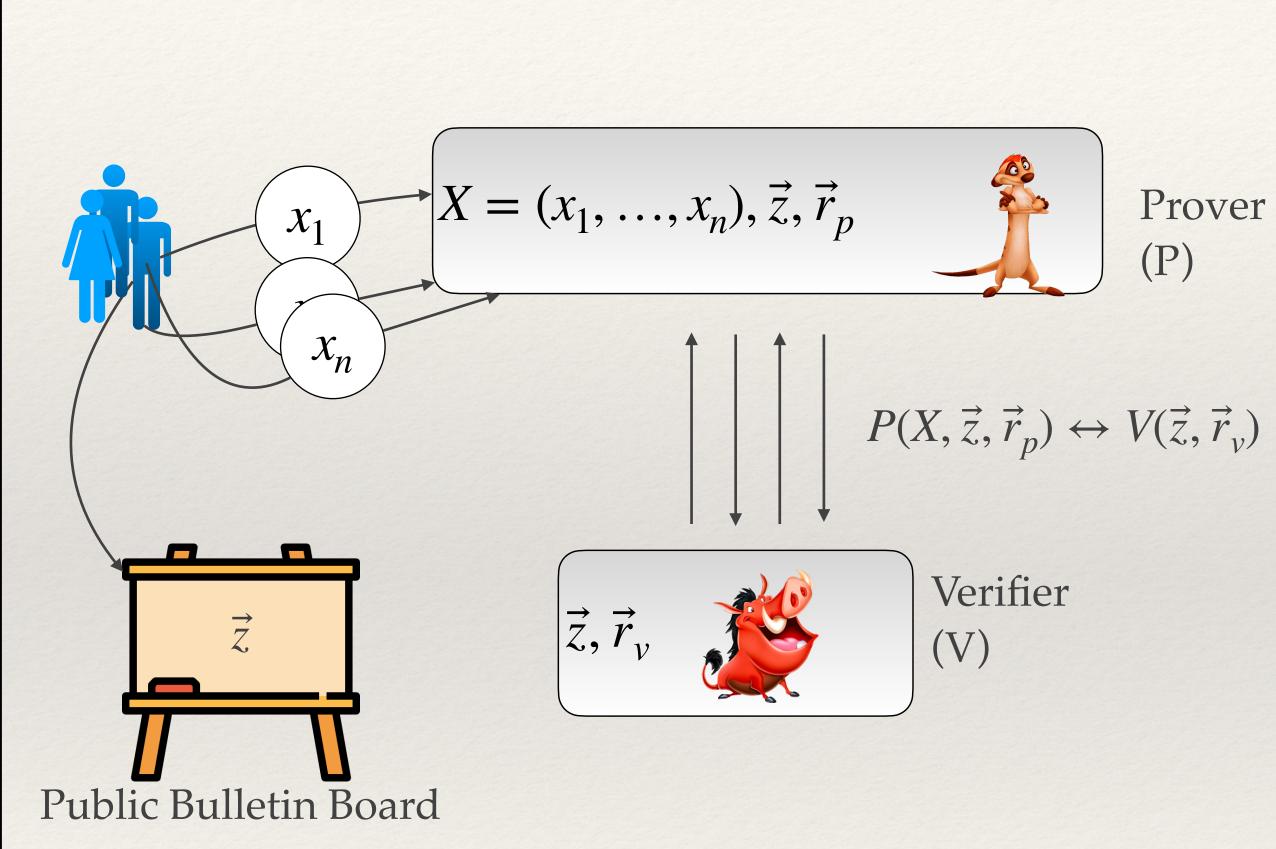
* We have commitments that are homomorphic and support OR arguments.

Quick Recap



Verifiable - The Setting

Verifiable DP



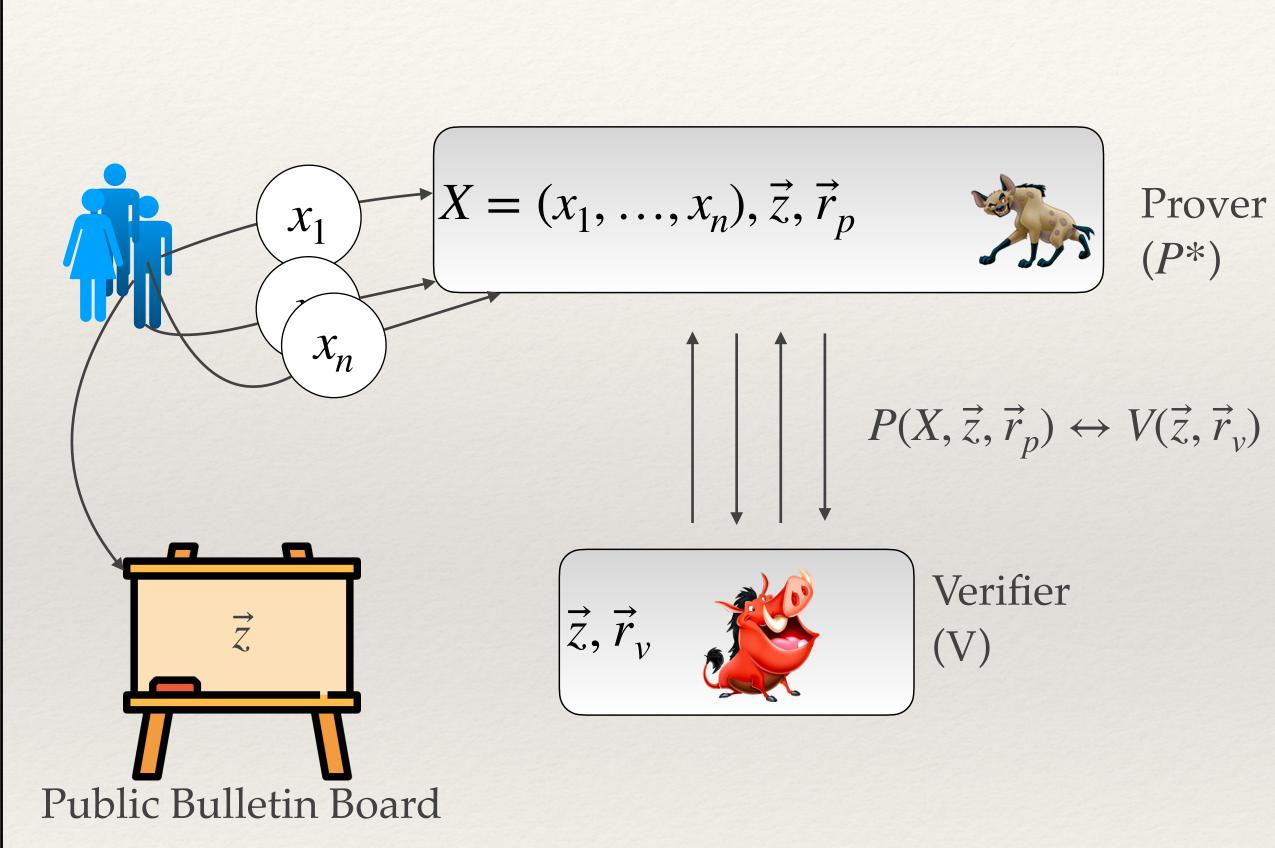
$$(\vec{r}_p) \leftrightarrow V(\vec{z}, \vec{r}_v)$$

Completeness:

If both the prover and the verifier are honest, then $y \stackrel{\$}{\leftarrow} M(X, Q)$ and

 $\Pr[\operatorname{Verify}(P \leftrightarrow V) = 1] = 1$

Verifiable DP

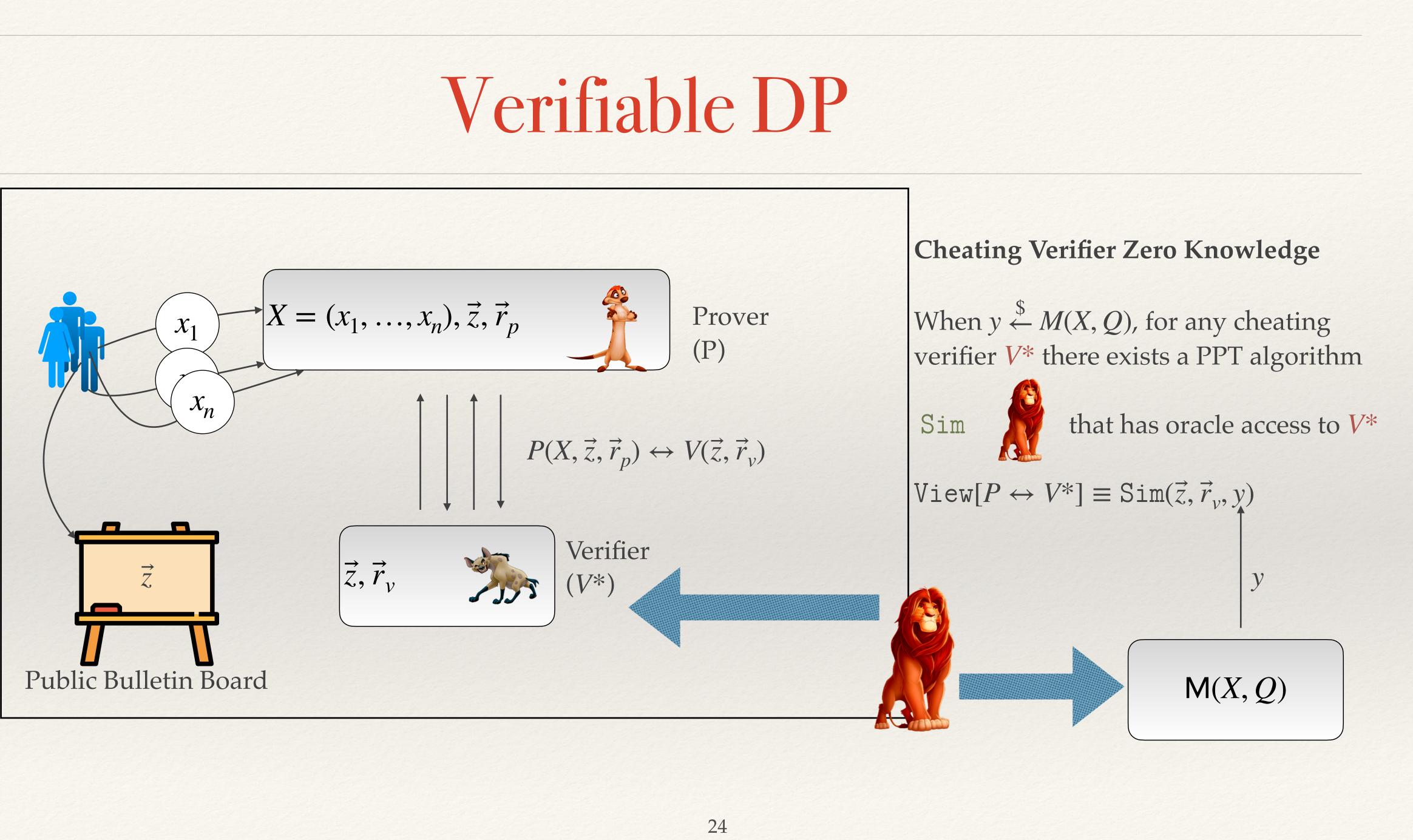


$$(\vec{r}_p) \leftrightarrow V(\vec{z}, \vec{r}_v)$$

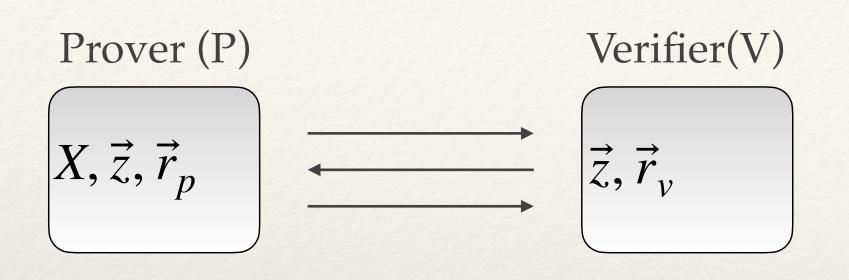
Soundness

For any cheating prover *P** that samples y from a distribution \mathcal{D} such that $\mathsf{TV}(\mathsf{M}(X, Q), \mathscr{D}) > \mu(\kappa)$

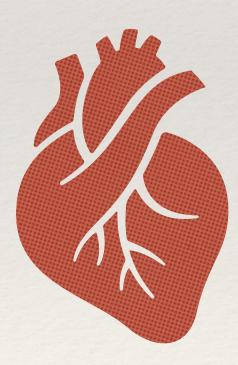
 $\Pr[\operatorname{Verify}(P^* \leftrightarrow V) = 1] \le 1/3$



The Soundness/ZK conflict



THE HEART OF THE PROBLEM



*Not to be confused with Proof Of Knowledge

** The noise used is not **pseudorandom** noise either

$$Z \stackrel{\$}{\leftarrow} \text{Binomial}(\eta, \frac{1}{2})$$
$$y = \left(Q(x_1, \dots, x_n) \right) + \left(Z \right) \stackrel{}{\longrightarrow} M(X; Q)$$

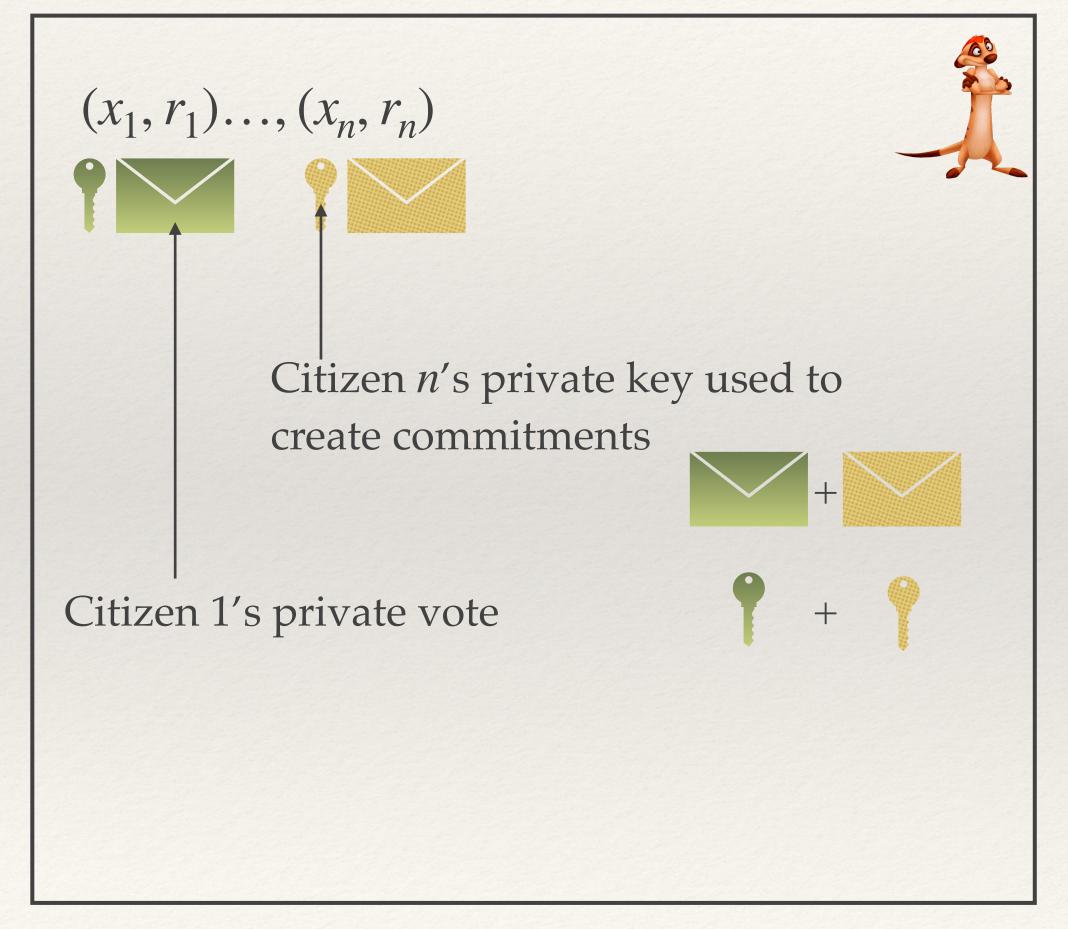
The output is a function of the provers local randomness. However the prover cannot ever reveal this randomness to the verifier as it would compromise DP.

The prover must find a way to prove that *Z* was sampled from the right distribution without ever revealing any information about *Z*.

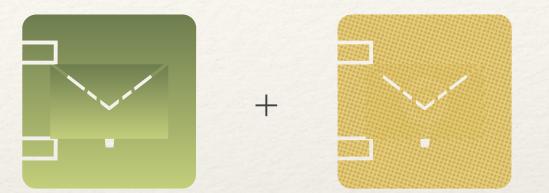
However, we also need some shared information (like say public randomness) for the verifier to be able to confident that *Z* is sampled correctly.

Non Private Counting

Server/Prover

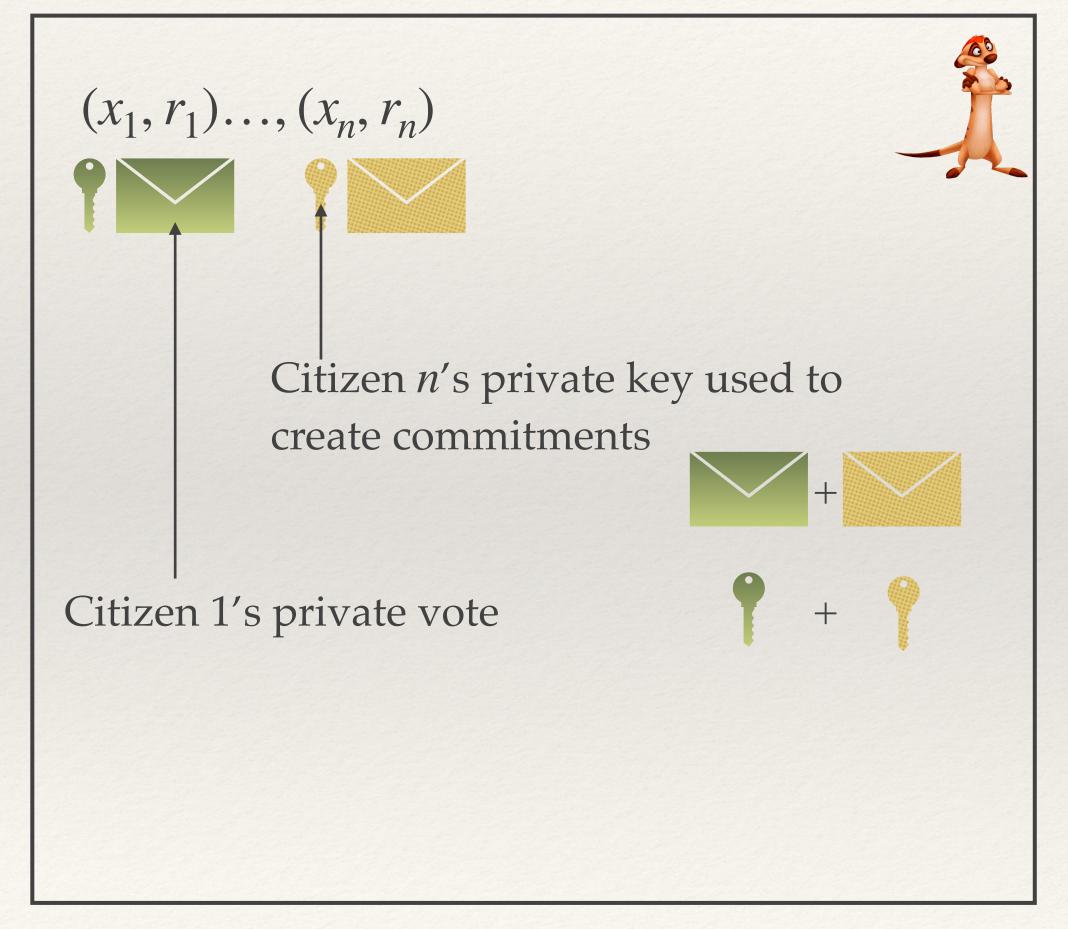


$Com(x_1, r_1), ..., Com(x_n, r_n)$

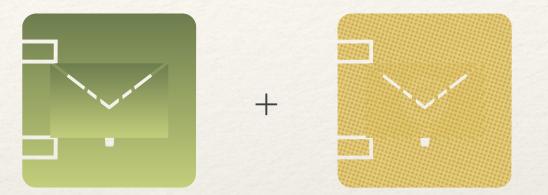


Non Private Counting

Server/Prover

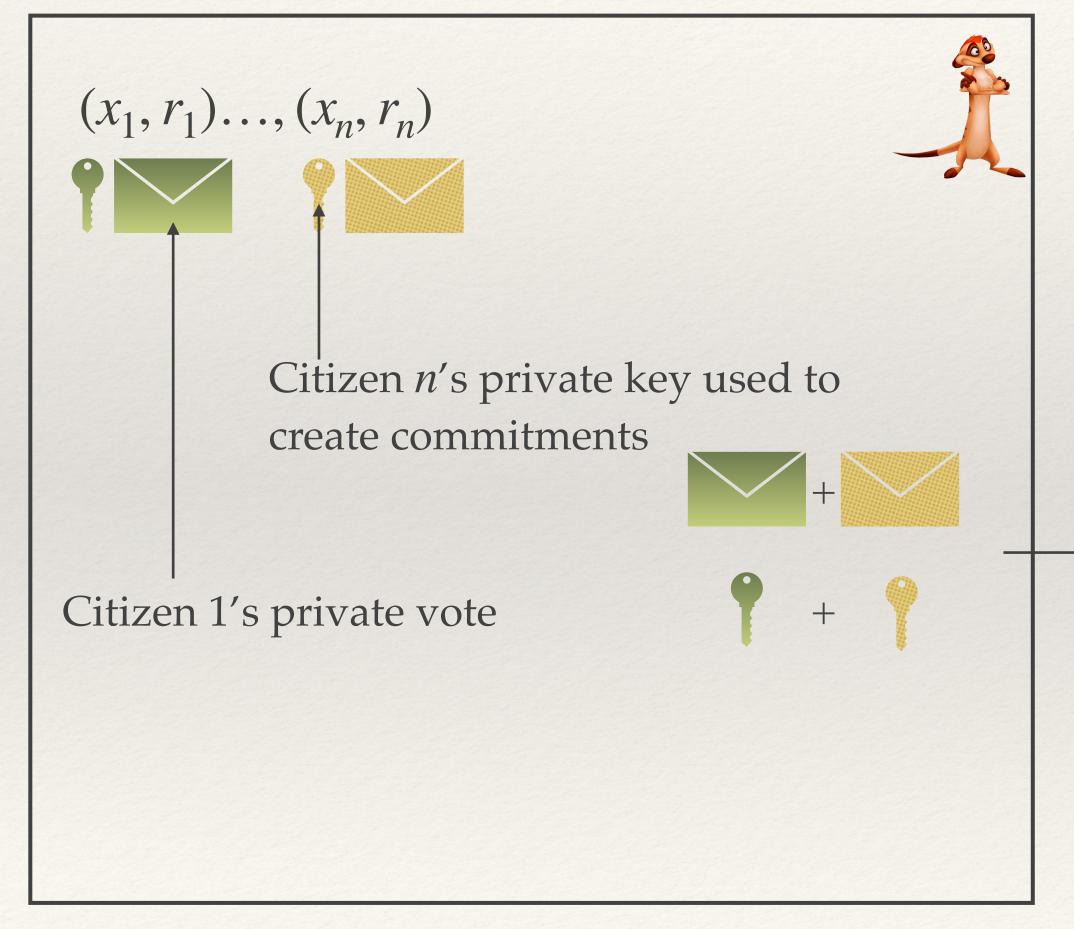


$Com(x_1, r_1), ..., Com(x_n, r_n)$

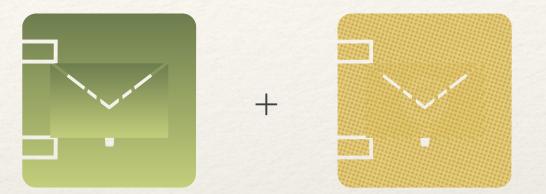


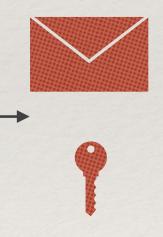
Non Private Counting

Server/Prover



$Com(x_1, r_1), ..., Com(x_n, r_n)$

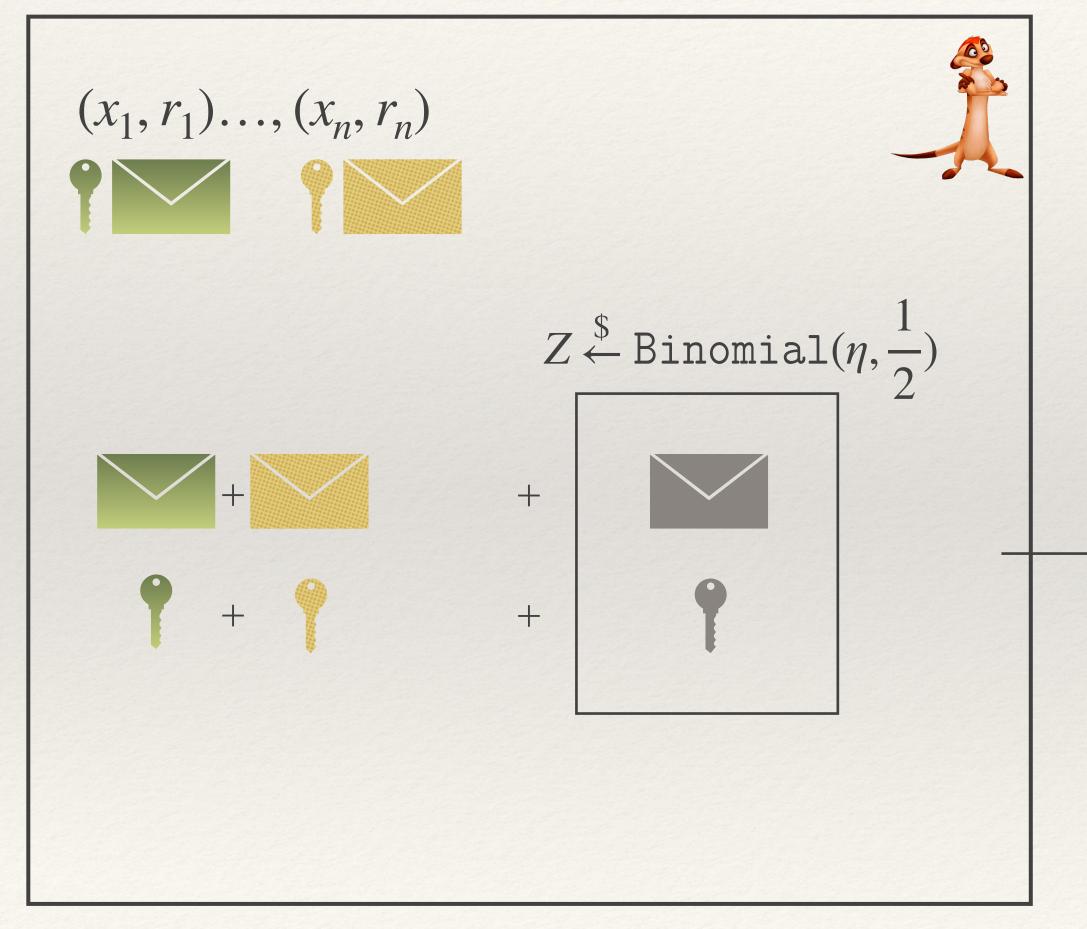


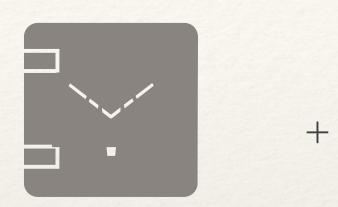


Check if key opens locked box properly.

Verifiable DP counting - Essence

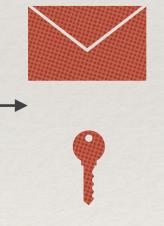
Server/Prover





Somehow need to create public commitment to Z

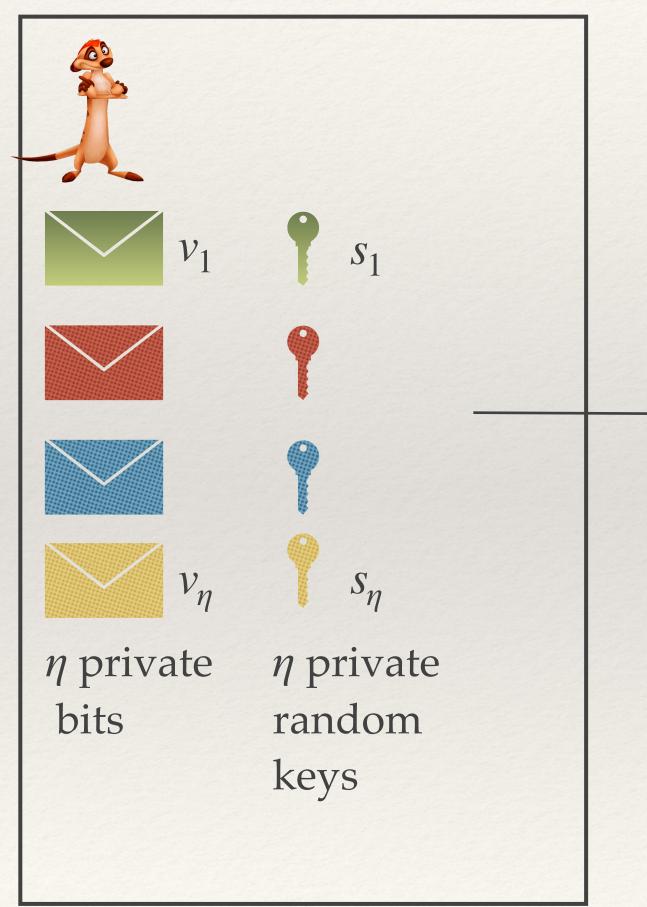
$Com(x_1, r_1), ..., Com(x_n, r_n)$



Check if key opens locked box properly.

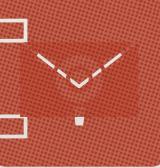
A Simple Trick

Server/Prover



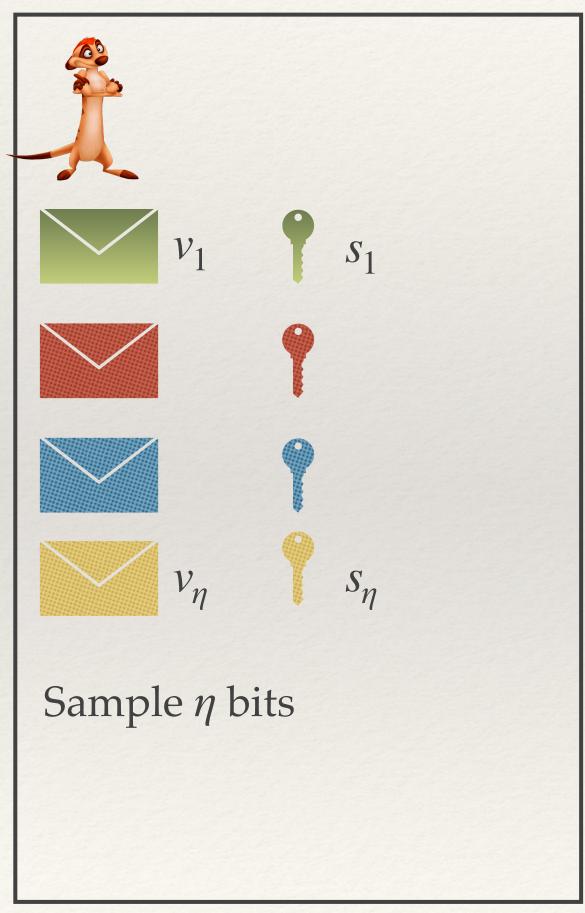
Note we cannot say anything about the distribution from which these bits are being sampled.

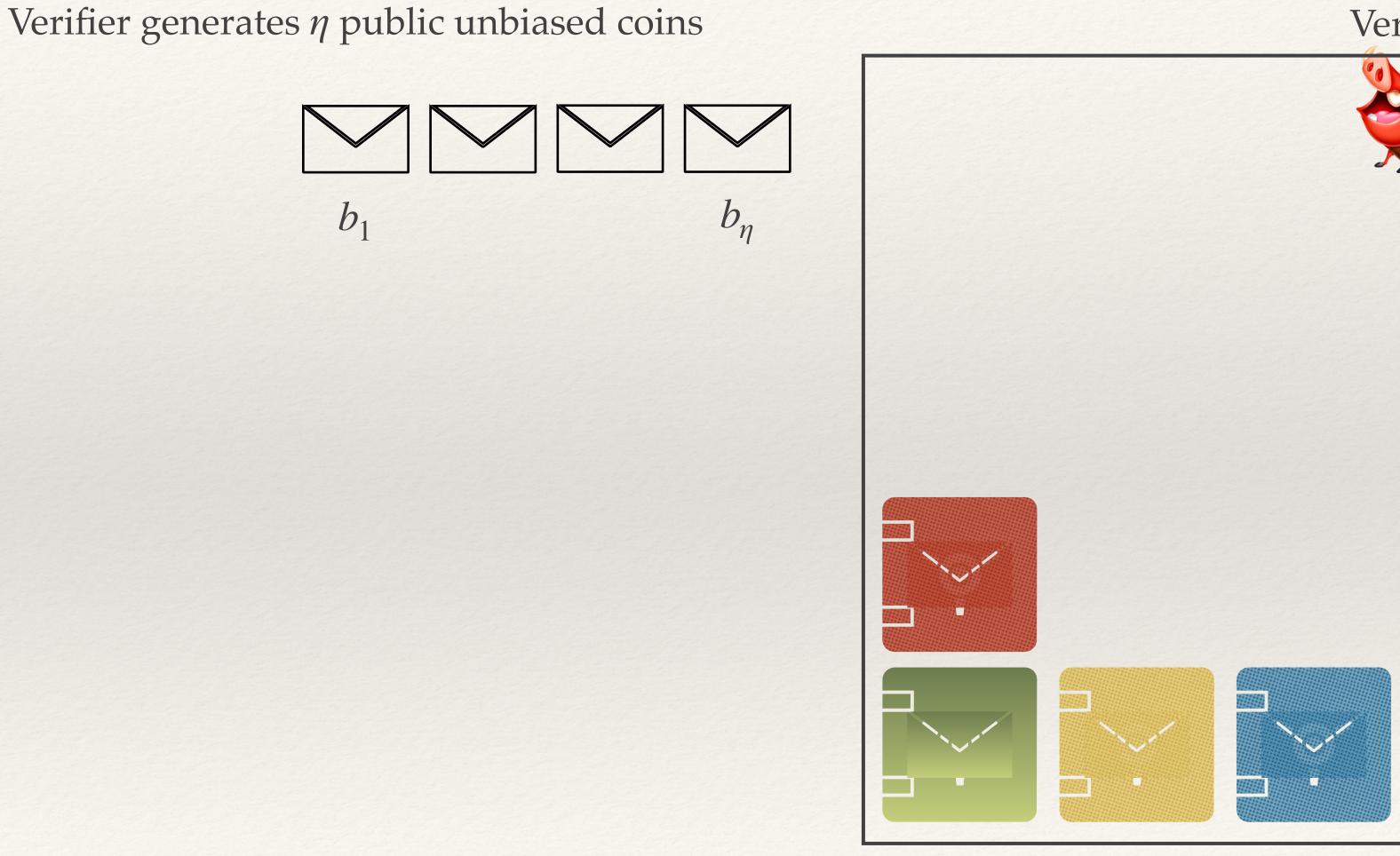
All the verifier knows is that these boxes are a commitment to a bit.

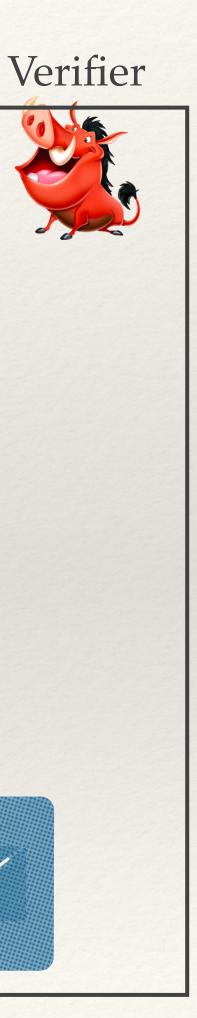


A Simple Trick

Server/Prover

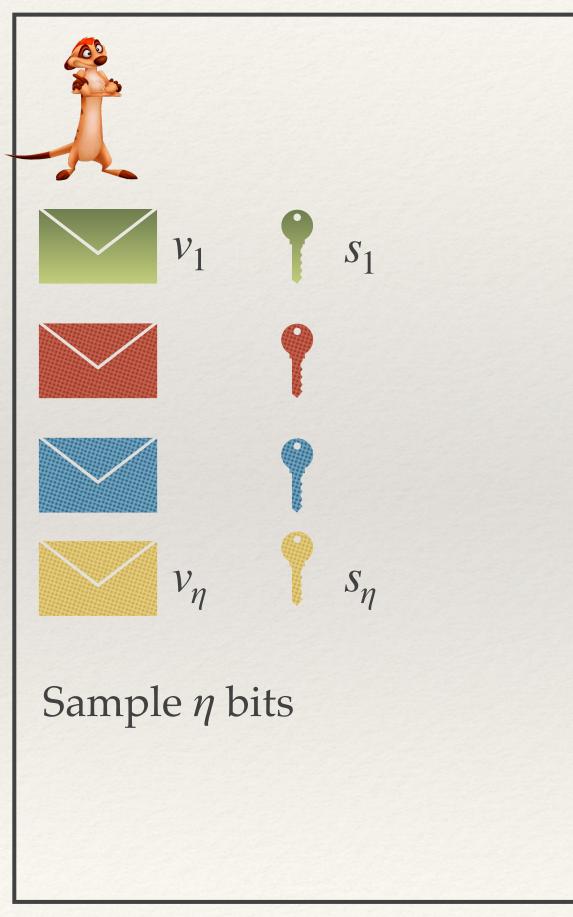






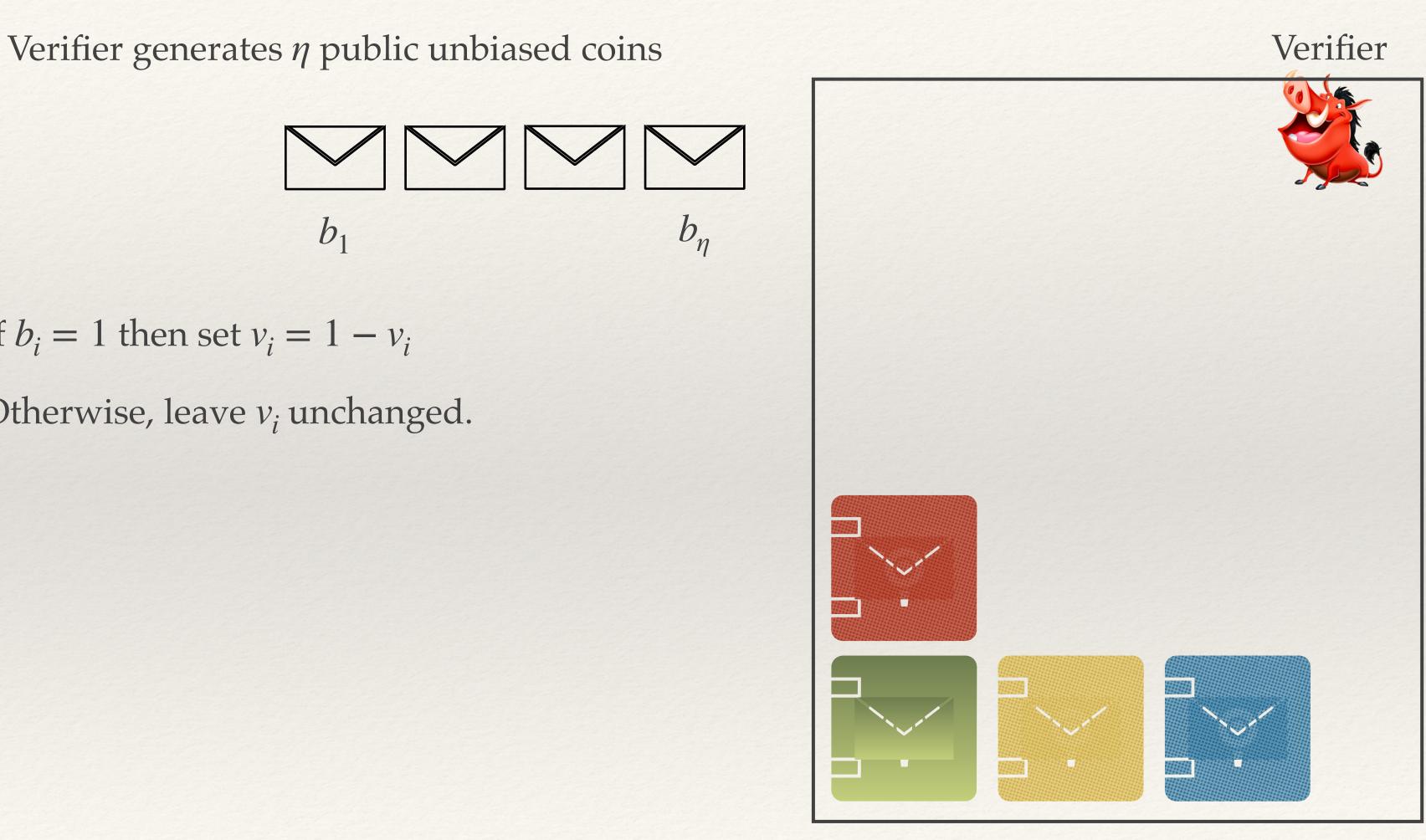
The Final Trick

Server/Prover



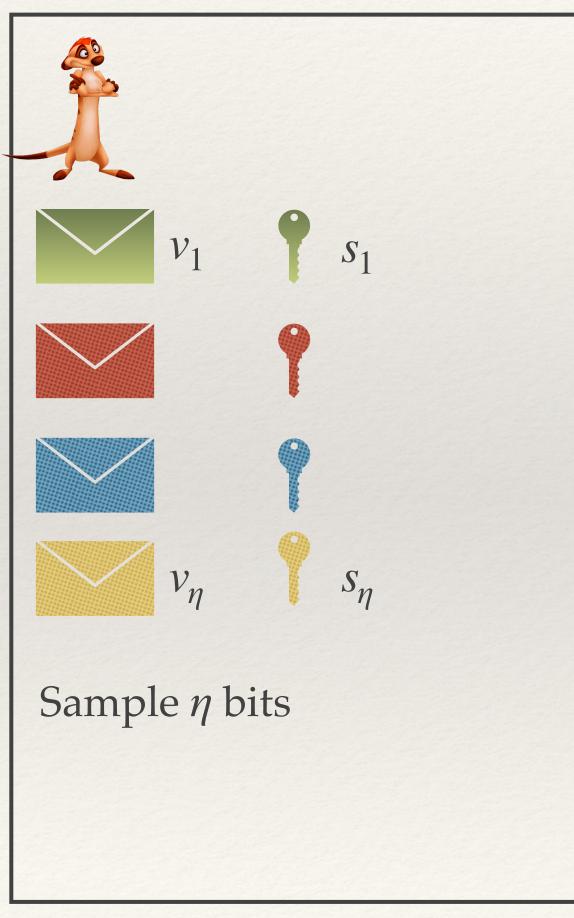
If $b_i = 1$ then set $v_i = 1 - v_i$

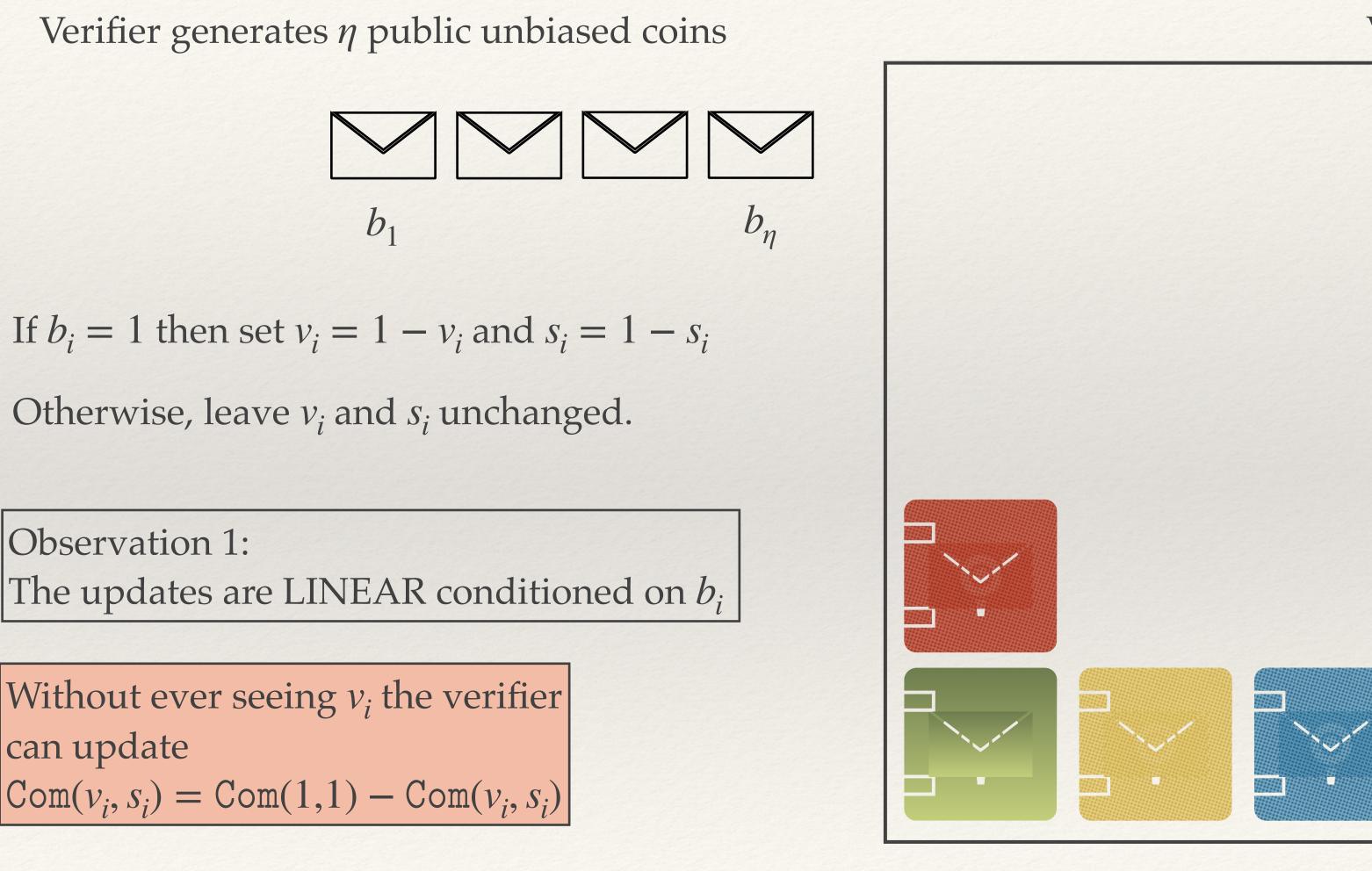
Otherwise, leave v_i unchanged.



The Final Trick

Server/Prover





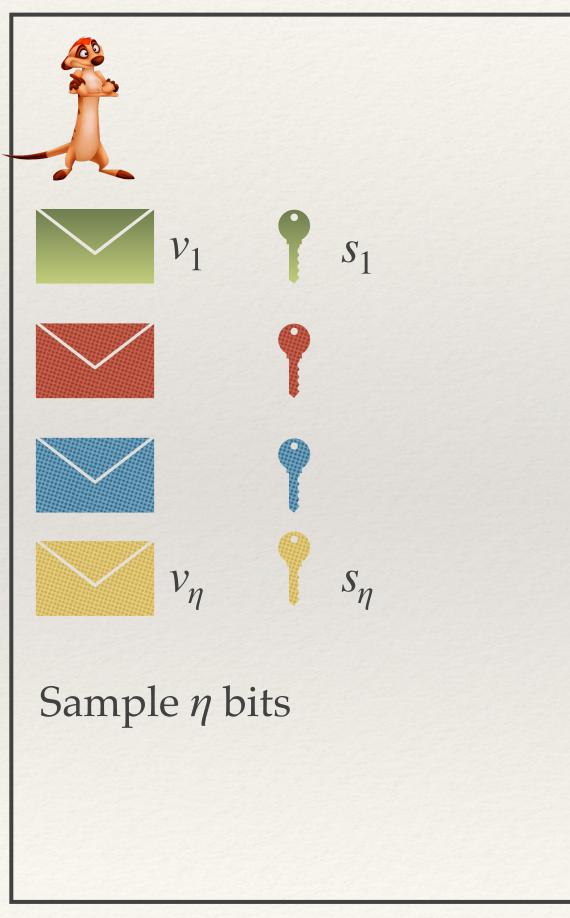
Otherwise, leave v_i and s_i unchanged.

Observation 1:

Without ever seeing v_i the verifier can update $\left|\operatorname{Com}(v_i, s_i) = \operatorname{Com}(1, 1) - \operatorname{Com}(v_i, s_i)\right|$

The Final Trick

Server/Prover

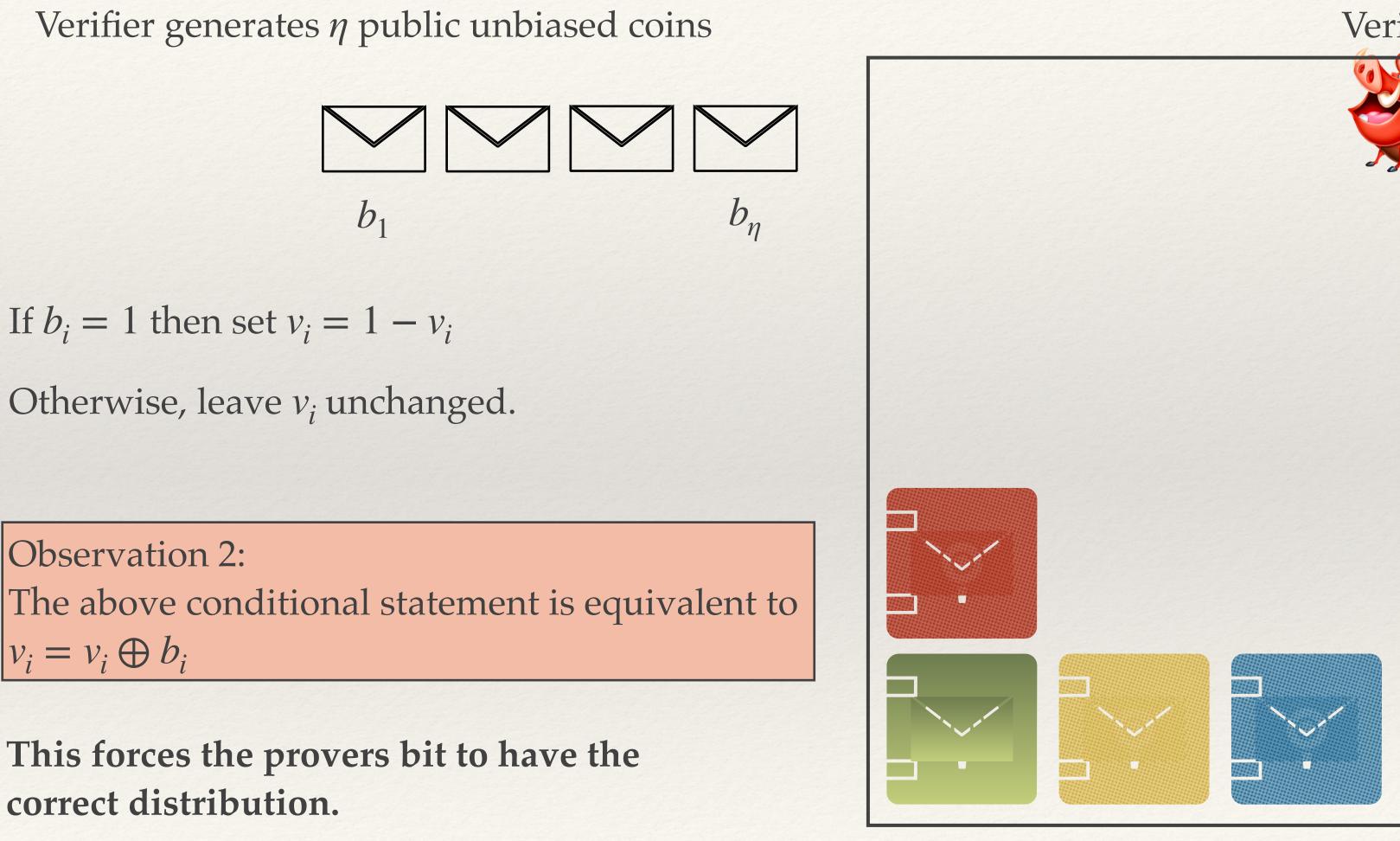


If $b_i = 1$ then set $v_i = 1 - v_i$

Otherwise, leave v_i unchanged.

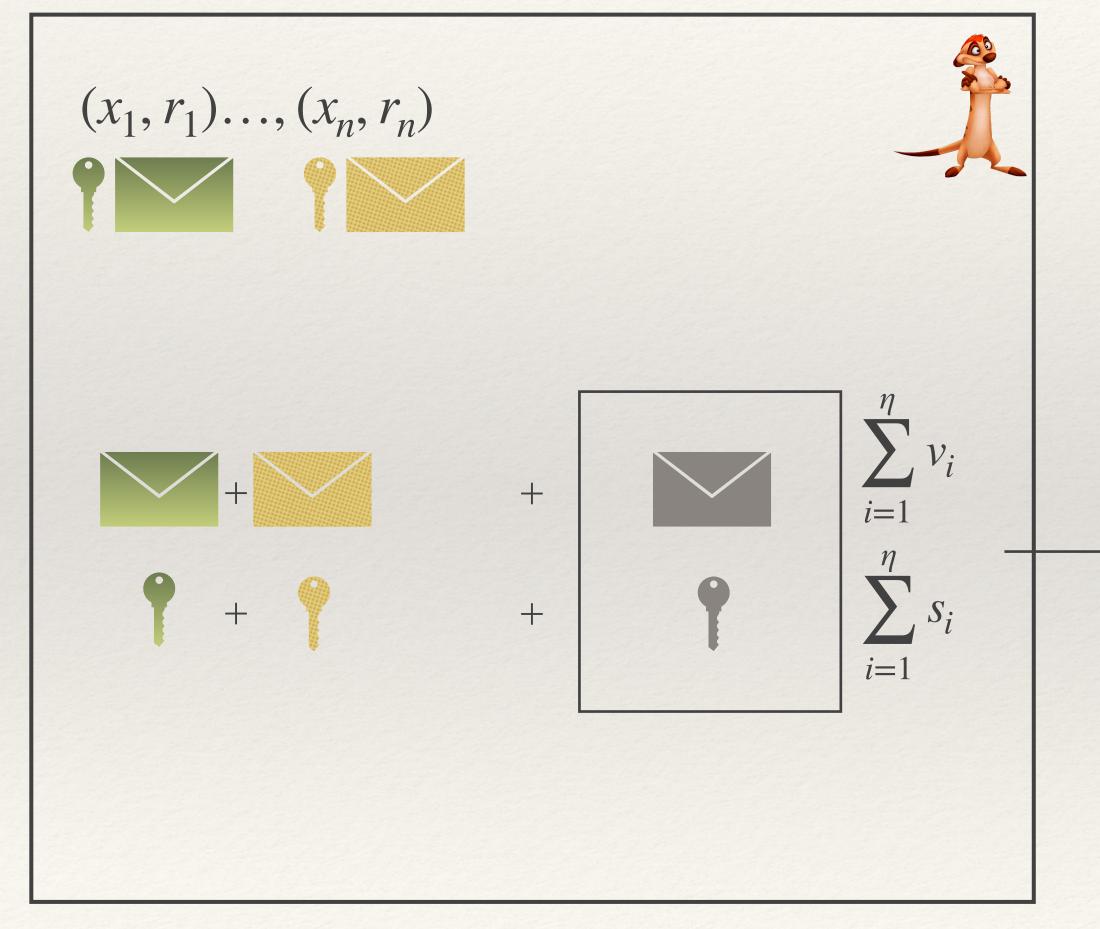
Observation 2: $v_i = v_i \oplus b_i$

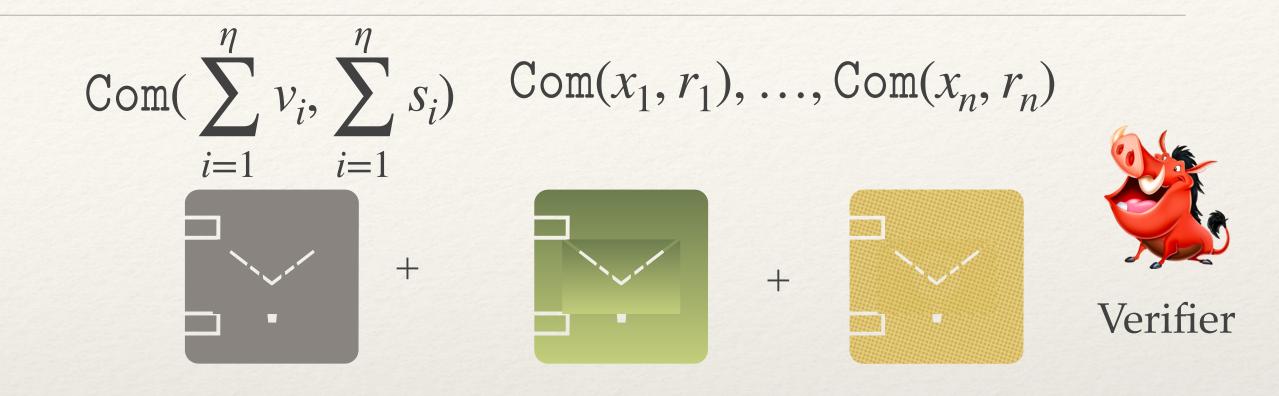
This forces the provers bit to have the correct distribution.



Final Check

Server/Prover





Check if key opens locked box properly.