Interactive Proofs For Differentially Private Counting

Ari Biswas ${ }^{1}$

Graham Cormode ${ }^{1,2}$
${ }^{1}$ University Of Warwick
${ }_{2}$ Meta AI

Motivating Problem: Counting

An Ideal Solution

A New Person Moves in

Randomness To The Rescue

* In this scenario, there is no deterministic algorithm that can help prevent information leakage about the n'th users value.
* Thus we MUST randomness to obfuscate information about the new user.

(ϵ, δ)-Differential Privacy (DP)

An algorithm $\mathrm{M}: X^{n} \times \mathbb{Q} \rightarrow \mathscr{Y}$ for releasing $Q(X)$

(ϵ, δ)-Differential Privacy (DP)

An algorithm $\mathrm{M}: X^{n} \times \mathscr{Q} \rightarrow \mathscr{Y}$ for releasing $Q(X)$

(ϵ, δ)-Differential Privacy (DP)

An algorithm $\mathrm{M}: X^{n} \times \mathbb{Q} \rightarrow \mathcal{Y}$ for releasing $Q(X)$

M is said to be (ϵ, δ)-Differentially Private if for any subset $T \subseteq \mathscr{Y}$
For any neighbouring datasets $X \sim X^{\prime}$ i.e datasets that differ by just one element

$$
\underset{y \leftarrow M(X, Q)}{\operatorname{Pr}_{\$}^{\$}[y \in T] \leq e^{\epsilon} \operatorname{Pr}[y \in T]+\delta}
$$

Utility Of A DP Algorithm

An algorithm $\mathrm{M}: \mathscr{X}^{n} \times Q \rightarrow \mathscr{Y}$ for releasing a DP version of $y=Q(X)$ where (\mathscr{Y}, d) is a metric space we define utility

$$
\text { Error }=\mathbb{E}_{\hat{y} \mathrm{~s}_{\mathrm{M}(X, Q)}}[d(\hat{y}, y)]
$$

$$
\begin{array}{lll}
\mathscr{y}=\mathbb{R}^{d} & d(x, y)=x-y & 1 \\
y=\mathbb{Z}_{q}^{d} & d(x, y)=x-y \quad 2 \\
& d(x, y)=x-y \quad \infty
\end{array}
$$

DP Counting

$$
Q(x, \ldots, x)=\sum_{n}
$$

Back To Our Ideal World

What If We Cannot Trust The Server?

What Do We Want

* We want outputs to be differentially private
* However, we also want the output to be reliable i.e, by that we mean any error in the output must come as a result of DP noise and that only.

Need Some Crypto

Commitments

Two stage interactive protocol between a Committer and a Receiver

Commit Phase

Reveal Phase

Homomorphic Commitments

Disjunctive OR Arguments

Quick Recap

* We have commitments that are homomorphic and support OR arguments.

Verifiable - The Setting

Un-verifiable DP

Verifiable DP

Verifiable DP

Verifiable DP

Verifiable DP

The Soundness/ZK conflict

THE HEART OF THE PROBLEM

*Not to be confused with Proof Of Knowledge
** The noise used is not pseudorandom noise either
$Z \& \operatorname{Binomial}\left(\eta, \frac{1}{2}\right)$

The output is a function of the provers local randomness. However the prover cannot ever reveal this randomness to the verifier as it would compromise DP.

The prover must find a way to prove that Z was sampled from the right distribution without ever revealing any information about Z.

However, we also need some shared information (like say public randomness) for the verifier to be able to confident that Z is sampled correctly.

Non Private Counting

Server/Prover

$\operatorname{Com}\left(x_{1}, r_{1}\right), \ldots, \operatorname{Com}\left(x_{n}, r_{n}\right)$

Non Private Counting

Server / Prover

$\operatorname{Com}\left(x_{1}, r_{1}\right), \ldots, \operatorname{Com}\left(x_{n}, r_{n}\right)$

Non Private Counting

Server / Prover

Verifiable DP counting - Essence

Server / Prover

Somehow need to create public commitment to Z

Check if key opens locked box properly.

A Simple Trick

Server / Prover

Note we cannot say anything about the distribution from which these bits are being sampled.

All the verifier knows is that these boxes are a commitment to a bit.

A Simple Trick

Server / Prover

Verifier generates η public unbiased coins

The Final Trick

Server / Prover

Verifier generates η public unbiased coins

If $b_{i}=1$ then set $v_{i}=1-v_{i}$
Otherwise, leave v_{i} unchanged.

The Final Trick

Server / Prover

Verifier generates η public unbiased coins

If $b_{i}=1$ then set $v_{i}=1-v_{i}$ and $s_{i}=1-s_{i}$
Otherwise, leave v_{i} and s_{i} unchanged.

Observation 1:
The updates are LINEAR conditioned on b_{i}

```
Without ever seeing vi}\mp@subsup{v}{i}{}\mathrm{ the verifier
can update
Com(vi, si)=\operatorname{Com(1,1) - Com(vi},\mp@subsup{s}{i}{})
```


The Final Trick

Server / Prover

Verifier generates η public unbiased coins

If $b_{i}=1$ then set $v_{i}=1-v_{i}$
Otherwise, leave v_{i} unchanged.

Observation 2:
The above conditional statement is equivalent to $v_{i}=v_{i} \oplus b_{i}$

This forces the provers bit to have the correct distribution.

Final Check

Server/Prover

$$
\operatorname{Com}\left(\sum_{i=1}^{\eta} v_{i}, \sum_{i=1}^{\eta} s_{i}\right) \quad \operatorname{Com}\left(x_{1}, r_{1}\right), \ldots, \operatorname{Com}\left(x_{n}, r_{n}\right)
$$

Check if key opens locked box properly.

