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ABSTRACT

Differential Privacy (DP) is often presented as a strong privacy-enhancing technology with broad
applicability and advocated as a de-facto standard for releasing aggregate statistics on sensitive data.
However, in many embodiments, DP introduces a new attack surface: a malicious entity entrusted
with releasing statistics could manipulate the results and use the randomness of DP as a convenient
smokescreen to mask its nefariousness. Since revealing the random noise would obviate the purpose
of introducing it, the miscreant may have a perfect alibi. To close this loophole, we introduce the idea
of Verifiable Differential Privacy, which requires the publishing entity to output a zero-knowledge
proof that convinces an efficient verifier that the output is both DP and reliable. Such a definition
might seem unachievable, as a verifier must validate that DP randomness was generated faithfully
without learning anything about the randomness itself. We resolve this paradox by carefully mixing
private and public randomness to compute verifiable DP counting queries with theoretical guarantees
and show that it is also practical for real-world deployment. We also demonstrate that computational
assumptions are necessary by showing a separation between information-theoretic DP and compu-
tational DP under our definition of verifiability.

1 Introduction

We are living in an age of delegation, where the bulk of our digital data is held and processed by others in an opaque
fashion. Our interactions are collated by digital applications that continually send our personal information to the
“cloud”. Servers in the cloud, typically owned by large monolithic organizations, such as Google, AWS or Microsoft,
then perform computations on our private data to publish aggregate statistics for social utility. For example, we send
our GPS coordinates to services like Strava and Google which, in exchange, use this information to recommend low-
traffic cycling routes [RHML21]. Similarly, we let entertainment companies like Netflix, YouTube, TikTok and Hulu
know our personal preferences so that they can better recommend content for us to consume [BK07]. National census
bureaus collect personal information to publish aggregate statistics about the population, and consider doing so a moral
duty to ensure transparency in the government’s policies [BS22].

However, it is often the case that published aggregate statistics leak information about the activity of individuals. For
example, Garfinkel et al. and Kasiviswanathan et al. describe practical reconstruction attacks that can be used to infer
an individual’s private data from aggregate population statistics [GAM19, KRS13]. Boyd et al. show that published
census data has been used to discriminate against groups in society based on race [BS22]. Hence the information that
is released, and how it is computed, requires careful scrutiny.

In response to these concerns, the privacy and security community have sought to apply various privacy enhancing
technologies to protect the privacy of individuals contributing to data releases. Most relevant to this discussion is
Differential Privacy (DP) and its generalizations, which require computations to be randomized, in order to offer the
(informally stated) promise that users will not be adversely affected by allowing their data to be used. Typically,
this is achieved by adding carefully calibrated random noise to the output, at the expense of reducing the accuracy
of the computation. Differential privacy is most commonly studied in the trusted curator model, where a single
entity receives all the sensitive data, and is entrusted to execute the algorithm to apply the random noise. Variations
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that modify the trust and computational model include local privacy [War65], shuffle privacy [BBGN19, CSU19],
computational differential privacy [MPRV09] and multi-party differential privacy [MMP+10].

A consistent theme across all existing work is to view DP simply as a privacy preserving mechanism. In this paper
we shift the focus and view differential privacy through an adversarial lens: what if an adversary seeks to abuse
the protocol and pick noise chosen to distort the statistics, using differential privacy as an attack vector? That is, a
malicious entity may tamper with the computation in order to publish biased statistics, and claim this reflects the true
outcome; any discrepancies may be dismissed as artifacts of random noise. Consider a counting query DP protocol
to determine the winner of a plurality election, where the users vote for 1 out of M candidates (say, which topping
people prefer on their pizza). A corrupted aggregator might not be interested in any particular user’s vote but in biasing
the aggregate output of the protocol instead. Thus, if that server has auxiliary information about the preferences of a
subset of users, they might tamper with the protocol to exclude those honest voters from the election or tamper with the
protocol to bias the results of the election (say, to pineapple) and blame any discrepancies in the result on random noise
introduced by DP. Note that some loss in accuracy for privacy is unavoidable. By definition, DP requires the output be
perturbed by private randomness. Often, outputting such random statistics creates tensions between publishing entity
and the downstream consumer. In 2021, the State Of Alabama filed a lawsuit claiming that the use of DP on census
data was illegal [Jus21], citing the inaccuracies introduced by DP. Thus, to ensure public trust in DP, it is critical to
verify that any loss in utility can be attributed solely to unavoidable DP randomness.

To that effect, we formally introduce the idea of publicly verifiable differential privacy in both the trusted curator
setting and the multi-party setting in presence of active adversaries1. Our contributions are as follows:

1. We formally introduce publicly verifiable differential privacy in both the trusted curator and client-server
multiparty setting [BDO14]. Informally, the entity responsible for releasing DP statistics is required to also
output a zero-knowledge proof to verify that the statistic was computed correctly and the private randomness
generated faithfully. Such a proof reveals no additional information and still enforces that user privacy is
protected via DP but ensures that the curator cannot use DP randomness maliciously.

2. We show concrete instantiations of verifiable DP by computing DP counting queries (histograms) in the
trusted curator setting and the client-server multiparty setting. In the trusted curator setting, there is a single
aggregating server that sees client data in plaintext and is responsible for outputting a DP histogram and a
proof that the DP noise was generated faithfully. In the client-server MPC setting, clients secret share the
inputs and send them to K ≥ 2 servers, who then participate in an MPC protocol to output DP histograms.
The protocol itself is secure in that not even the participating servers are able to learn any new information
beyond the output nor are they able to tamper with the protocol.

3. We conduct experiments to show that our protocols with formal theoretical guarantees are also practical.
Additionally, we describe how our protocol ΠBin, for verifiable DP counting, can be combined with existing
(non-verifiable) DP-MPC protocols, such as PRIO [CGB17] and Poplar [BBCG+22], to enforce verifiability.

4. We demonstrate that information-theoretic verifiable DP is impossible. Specifically, if both the prover and
verifier are computationally unbounded, then both statistical zero knowledge and unconditional soundness
cannot hold. Thus we could either prevent an all-powerful curator from manipulating DP protocols or an
all-powerful verifier from being able to distinguish between neighbouring datasets from the output, but not
both. This result is related to an open problem (Open Problem 10.6) of Vadhan [Vad17], which asks “Is there
a computational task solvable by a single curator with computational differential privacy but is impossible
to achieve with information-theoretic differential privacy?”. In Section 5 we relate our result to efforts at
resolving this question.

2 Preliminaries

2.1 Notation

We write x R←− U to denote that x was uniformly sampled from a set U . We denote vectors with an arrow on top as in
~x ∈ ZMq , where M represents the number of coordinates in the vector and Zq represents a prime order finite field of
integers of size q. We write ~a+~b to mean coordinate-wise vector addition a+ b mod q, where a and b are arbitrary
coordinates of ~a and ~b. Similarly, when we write ~a ×~b, we refer to the coordinate-wise Hadamard product between
the two vectors.

1By active adversaries, we mean participants that may deviate from protocol specifications arbitrarily
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2.2 Privacy and Security Background

Indistinguishability. We define a computational notion of indistinguishability.

Definition 1 (Computational Indistinguishability) Fix security parameter κ ∈ N. Let {Xκ}κ∈N and {Yκ}κ∈N be
probability distributions over {0, 1}poly(κ). We say that {Xκ}κ∈N and {Yκ}κ∈N are computationally indistinguish-
able {Xκ}κ∈N

c≡ {Yκ}κ∈N if for all non-uniform PPT turing machinesD (“distinguishers”), there exists a negligible
function µ(κ) such for every κ ∈ N ∣∣∣Pr[D(Xκ) = 1]− Pr[D(Yκ) = 1]

∣∣∣ ≤ µ(κ) (1)

Commitments. Commitments are used in our schemes to ensure that participants cannot change their response during
the protocol.

Definition 2 (Commitments) Let κ ∈ N be the security parameter. A non-interactive commitment scheme consists of
a pair of probabilistic polynomial time algorithms (Setup, Com). The setup algorithm pp ← Setup(1κ) generates
public parameters pp. Given a message space Mpp and randomness space Rpp, the commitment algorithm Compp defines
a function Mpp× Rpp → Cpp that maps a message to the commitment space Cpp using the random space. For a message

x ∈ Mpp, the algorithm samples rx
R←− Rpp and computes cx = Compp(x, rx). When the context is clear, will drop the

subscript and write Compp as Com.

Definition 3 (Homomorphic Commitments) A homomorphic commitment scheme is a non-interactive commitment
scheme such that Mpp and Rpp are fields (with (+,×)) and Cpp are is an abelian groups with the ⊗ operator on which
the discrete log problem (Definition 9) is hard, so that for all x1, x2 ∈ Mpp and r1, r2 ∈ Rpp we have

Com(x1, r1)⊗ Com(x2, r2) = Com(x1 + x2, r1 + r2) (2)

Throughout this paper, when we use a commitment scheme, we mean a non-interactive homomorphic commitment
scheme with the following properties (stated informally here, but formalized in the Appendix A):

1. Hiding: A commitment cx reveals no information about x and rx to a computationally bounded adversary
(Definition 10).

2. Binding: Given a commitment cx to x using rx, there is no efficient algorithm that can find x′ and rx′ such
that Com(x′, rx′) = cx = Com(x, rx) (Definition 11).

3. Zero Knowledge OR Opening: Given cx, the commiting party is able to prove to a polynomial time verifier
that cx is a commitment to either 1 or 0 without revealing exactly which one it is. We denote such a proof as
ΠOR and say it securely computes the oracle OOR, which computes if cx ∈ LBit

LBit = {cx : x ∈ {0, 1} ∧ cx = Com(x, rx)} (3)

where for some rx ∈ Zq . See Appendix C for a concrete construction of the Σ-OR proof using Pedersen
Commitment schemes proposed by [Dam00].

In all our experiments and security proofs, we use Pedersen Commitments (PC), though one could replace PC with
[WYKW21, DIO20, BMRS21], and still satisfy all the above properties.

Differential Privacy (DP and IND-CDP). We consider two variants of the privacy definition.

Definition 4 (Information Theoretic DP [Vad17]) Fix n ∈ N, ε ≥ 0 and δ ≤ n−ω(1). An algorithmM : Xn×Q→
Y satisfies (ε, δ) differential privacy if for every two neighboring datasets X ∼ X ′ such that ||X ∼ X ′||1 = 1 and for
every query Q ∈ Q we have for all T ⊆ Y

Pr[M(X,Q) ∈ T ] ≤ eε Pr[M(X ′, Q) ∈ T ] + δ (4)

A direct corollary of the above definition is that, given M(X,Q) and M(X ′, Q), with probability 1 − δ even an
unbounded Turing Machine D is unable to distinguish between the outputs up to statistical distance ε. We will often

write M(X,Q)
(ε,δ)
≡ M(X ′, Q) as short hand to say thatM is DP.
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Algorithm 1 Πmorra A protocol for sampling a public coin

Input: λ1, . . . , λK

Output: z R←− {0, 1}

1. Each server k ∈ [K] is asked to sample mk
R←− Zq uniformly at random.

2. Commit: Each server samples rmk
R←− Zq and broadcasts ck = Com(mk, rk) to all other servers. Assume

without loss of generality that the servers broadcast their commitments in natural lexicographical order
k ∈ [K].

3. Reveal: Once all servers have received ck, they now broadcast mk, rmk to all servers in the reverse order in
which the commitments arrived. It is important that the reverse order is respected as it guarantees that each
server’s inputs are independent of the inputs of other servers. Once all commitments are revealed, each
server verifies that Com(mk, rk) = ck. If this test fails for any k or one of the servers does not respond, the
protocol is aborted.

4. Each server computes X = (m1 + · · ·+mk) mod q. We have X R←− Zq . If X ≤ d q2e then ci = 0.
Otherwise ci = 1. Thus we can use this protocol to generate unbiased coins and uniformly random values.

Definition 5 (Computational DP [MPRV09]) Fix κ ∈ N and n ∈ N. Let ε ≥ 0 and δ(κ) ≤ κ−ω(1) be a negligible
function, and let M = {Mκ : Xnκ → Yκ}κ∈N be a family of randomised algorithms, where Xκ and Yκ can be
represented by poly(κ)-bit strings. We say thatM is computationally ε-differentially private if for every non-uniform
PPT TM’s (“distinguishers”) D, for every query Q ∈ Q, and for every neighbouring dataset X ∼ X ′, ∀T ⊆ Yκ we
have

Pr
[
D(M(X, q) ∈ T ) = 1

]
≤ eε · Pr

[
D(M(X ′, q) ∈ T ) = 1

]
+ δ(κ) (5)

We will often write M(X,Q)
(ε,δ)−CDP
≡ M(X ′, Q) as short hand to say thatM is IND-CDP.

Definition 6 (DP-Error) Let M : X × Q → Y be a (ε, δ)-DP mechanism over Q. Assume that the L1 norm is
well-defined on Y . For any n ∈ N, X ∈ Xn, we define the expected error of the mechanismM relative to Q as

ErrM,Q = E[‖Q(X)−M(X,Q)‖] (6)

where the expectation is taken over internal randomness ofM.

When the context is abundantly clear, to simply notation we will drop the subscripts and refer to equation (6) as just
Err. It is well known that for negligible δ, the counting query (i.e., DP histograms) has error Err = O( 1

ε ) in the
trusted curator model and MPC model [Vad17, CGB17].

Binomial Mechanism. We use Binomial noise to achieve privacy.

Lemma 2.1 (Binomial Mechanism) Let X = (x1, . . . , xn) ∈ Znq and define counting query Q(X) =
∑n
i=1 xi. Fix

nb > 30, 0 < δ ≤ o( 1
nb

) and let Z ∼ Binomial(nb,
1
2 ). Then Z + Q(X) is an (ε, δ)-differentially private with

ε = 10
√

1
nb

ln 2
δ .

It is easy to see that the binomial mechanism incurs constant DP-error (i.e., it is independent of n, and depends only
on ε, δ). The proof for Lemma 2.1 can be found in [GGK+20], which we re-derive in Appendix B for completeness.

Morra. We will prove zero knowledge (or security for MPC) assuming that the provers and verifiers (or all participants
of the MPC, respectively) have access to an oracle that returns a polynomial sized stream of publicly random unbiased
bits. In other words, we assume that all parties have access to an oracle functionality Omorra(1

κ, λ1, . . . , λK) = z

where z R←− {0, 1} where and λk refers to the empty string for all k ∈ [K].

In practice, this oracle is replaced by a lightweight MPC protocol such as Πmorra defined in Algorithm 1, which is a
modification of an ancient game called Morra2, that securely computes Omorra in the presence of a dishonest majority
of active participants. It is easy to see that as long as one participant is honest and samples its value uniformly at

2https://en.wikipedia.org/wiki/Morra_(game)
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random, the final protocol produces an unbiased coin. Since the commitment is hiding, a corrupt party cannot infer
any information about the other parties choice mk from the published cmk and by the binding property, a participant
cannot change their decision after observing another party’s opening. A formal simulator-styled proof can be found
in Blum’s seminal work for flipping coins over a telephone [Blu83] or any introductory textbook on MPC (under the
title weak coin flipping). If we omit the final thresholding step, the above protocol can be used to sample z R←− Zq .

3 Security Models for Verifiable DP

This section introduces verifiable DP in both the single trusted curator and MPC model. In both settings, the input
comes from n distinct clients. Informally, the main difference between the two models is that the former has plaintext
access to the client data. In contrast, in MPC-DP, the clients secret share (or partition) their inputs and each server
receives information theoretically hiding shares (or a partial view) of client inputs. Additionally, instead of a single
trusted entity computingM, the servers participate in an MPC protocol Π to securely computeM without revealing
any information other thanM(x1, . . . , xn, Q).

For some queries Q ∈ Q, the protocol requires that the client inputs come from a restricted subset L ⊆ X . For such
cases, if the servers are operating on information-theoretically hiding shares of the inputs, the clients must send a zero-
knowledge proof so that the provers can verify that the inputs come from the specified language, without learning any
other information about the inputs. Examples of such proofs can be found in the prior literature [BBCG+22, BGI19,
CGB17, BBB+18]. In the definitions below and in what follows, we use the terms Pv (prover), server and curator
interchangeably and the terms analyst and Vfr (verifier) to refer to the same entity.

3.1 Verifiable DP

In what follows, we describe the MPC model and then discuss how it can be specialized to the trusted curator model.
LetM be a DP (or IND-CDP) mechanism as described in Definition 4 (or Definition 5 resepectively) for a query class
Q. Let κ ∈ N denote the security parameter. A verifiable DP mechanism forM for query class Q on a dataset X ,
consists of two interactive protocols Setup and Π. The first protocol denoted by Setup is used to generate public
parameters. Let pp← Setup(1κ) denote such public parameters. The second protocol Π is a multiparty protocol be-
tween K + 1 “next-message-computing-algorithms” algorithms Vfr and (Pv1, . . . , PvK). The total number of rounds
of message passing is upper bounded by some polynomial poly(κ). In message passing algorithms, Vfr’s (respec-
tively Pvk’s) message mi at round i is determined by its input, messages it has received so far from Pvk (respectively
Vfr) and internal randomness ~rv (respectively ~rPvk ). Let ~Pv denote a succinct representation for (Pv1, . . . , PvK). Each
prover Pvk receives on its input tape n inputs

(
Jx1Kk, . . . , JxnKk

)
, succinctly denoted by ~Xk. Let ~rPvk ∈ {0, 1}poly(κ)

denote the internal randomness for Pvk; let z ∈ {0, 1}poly(κ) denote auxiliary input available to the verifier; and
let ~rv ∈ {0, 1}poly(κ) denote the internal randomness used by the verifying algorithm. At the end of the protocol,
the provers send ~y ∈ Y to the Vfr, who then outputs either 0 or 1, with 1 indicating that the verifier accepts the
provers’ claim that, the real protocol output is indistinguishable from an ideal computation, i.e. ~y = M(X,Q). Let
out(Vfr, ~y, ~rv, ~r~Pv, z, ~Pv, pp) ∈ {0, 1} denote the verifying algorithm’s decision. In the definition below, we write
out(Vfr, Pv) as shorthand for out(Vfr, ~y, ~rv, ~r~Pv, z, ~Pv, pp). The trusted curator can be understood as essentially this
model with a single prover, i.e., we set K = 1. Thus the only functional difference between MPC-DP and trusted
curator DP is that in the latter case, the curator sees all the data in plaintext. In MPC, the data may be secret, shared
or partitioned across the provers. In both cases, the prover(s) must prove that they did not tamper with the protocol to
generate an output that is distinguishable from the ideal computation ofM.

Definition 7 (Verifiable DP) A constant round interactive verifiable DP protocol forM consists of two algorithms
Setup and Π, such that for n ∈ N clients, K ≥ 1 provers denoted by ~Pv and a single verifier Vfr, there exists
negligible functions δc and δs such that

1. Completeness: Let X = (x1, . . . , xn) ∈ Xn be the client inputs that have been split in K shares
( ~X1, . . . , ~XK), where ~Xj denotes the input sent to the j’th prover, then as long as the ~Pv and Vfr hon-
estly execute Π, then we have

Pr

out(Vfr, ~Pv) = 0 :

pp← Setup(1κ)

Pvj ← ( ~Xj , ~rPvj , pp)
Vfr← (z, ~rv, pp)
~y ← Π( ~Pv, Vfr, pp)

 ≤ δc.
5
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2. Soundness: For every X ∈ Xn and any subset I ⊆ [K], let ~Pv∗ denote the collection of corrupted provers,
indexed by I , that deviate from Π, such that the final output ~y 6=M(X,Q), then we have

Pr

out(Vfr, ~Pv) = 1 :

pp← Setup(1κ)

Pvj ← ( ~Xj , ~rPvj , pp)
Vfr← (z, ~rv, pp)

~y ← Π( ~Pv∗, Vfr, pp)

 ≤ δs.
Note that the correctness of the protocol is defined in terms of the actual inputs the clients sent toM and not
the inputs a corrupted set of provers might have used. Thus if corrupted prover(s) tampered with the inputs
on its input tape and then executed the protocol faithfully, by our definitions, it still counts as cheating.

3. Zero-Knowledge: Let ~Pv∗ denote the collection of provers corrupted by any verifying algorithm Vfr∗

and I ⊂ [K] denote their indices. Let ~Pv∗ denote the set of honest provers not indexed by I . Let

View
[
Π
(

( ~Pv, ~Pv∗), Vfr∗
)]

be the joint distribution3 of messages and output received during the execu-
tion of Π in the presence of corrupted parties. There exists a PPT Simulator Sim(Vfr∗,I) such that for all
~y =M(X,Q)

View
[
Π
(

( ~Pv, ~Pv∗), Vfr∗
)]
≡ Sim(Vfr∗,I)(~y, ~rv, z, pp)

where z ∈ {0, 1}poly(κ) represents auxiliary input available to all the corrupted parties. Contrary to sound-
ness, for zero-knowledge to hold, the simulated transcript should be indistinguishable from the actual pro-
tocol transcript, based on the inputs adversaries used and not the ones the clients sent to a set of corrupted
provers.

An interesting point to note is that in verifiable differential privacy, the verifier plays a dual role. An honest verifier
ensures that the output is faithfully generated and thus plays an active role in generating the DP noise without ever
seeing it in plaintext. On the other hand, a dishonest verifier tries to tamper with the protocol to breach privacy. In
non-verifiable DP, the analysts (verifier) only have access to DP the statistic. They have no agency over how the output
is generated. Thus the verifier participating in verifiable DP has a greater attack surface than a classical adversary in
traditional non-verifiable DP. We elaborate on this in Section 5, when trying to establish separations between statistical
DP and computational DP. Additionally, just like in standard MPC, in the presence of a dishonest majority of corrupted
participants, we do not treat early exiting by corrupted parties as a breach of security. This is easily detected by the
honest parties, and the output is ignored. Verifiable DP, just like interactive zero-knowledge proofs [Gol07] comes in
24 different flavours based on the capabilities of the corrupted parties:

1. Distinguishability: Based on the distinguishability properties of the simulator algorithm, the protocol may be
perfect, statistical or computationally zero-knowledge. The protocol described in Section 4 is computationally
zero-knowledge.

2. Verifier specifications: Based on whether the verifier is expected to follow the rules of the protocol (semi-
honest) or may deviate arbitrarily (active), we get honest-verifier zero knowledge or just zero knowledge. All
our results are zero-knowledge.

3. Soundness: Based on the power of the corrupted provers, the protocol may be computationally sound (also
known as arguments) or statistically sound (secure against unbounded provers). The verifiable DP protocol
in Section 4 is computationally sound.

4. Inputs: Based on whether the verifier has access to the auxiliary input, the protocol could be plaintext zero-
knowledge or auxiliary input zero knowledge. Our protocols allow for the verifier to have auxiliary input.

4 Verifiable Binomial Mechanism

This section describes how to compute counting queries verifiably with differential privacy in both the single curator
and client-server MPC models. We consider the trusted curator model to be a special instantiation of the general MPC

3AsM is a random function, the joint distribution of the view of the adversary and their output must be indistinguishable from
the simulated transcript (and not just the view of the adversary). See [Lin17] for more details.
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model where the number of provers K = 1. In Section 4.1 we describe intuitions for our protocol, and in Section 4.2
we explain what is needed for verifiability in the MPC setting, and tackle the additional challenges of verifying client
inputs. We describe how prior efforts at verifying clients fall short of the security expectations of Definition 7. Finally,
in Section 4.3 we describe a protocol that computes counting queries with DP verifiably.

Set X = Zq = Y , where Zq is a prime order finite field of size q over the integers. Let X = (x1, . . . , xn) denote the
client inputs and the Q be the counting query Q(X) =

∑n
i=1 xi. Let JxiKk denote the k’th additive secret4 share of

a client input xi. Each client splits their input into K secret shares and distributes them across the provers. We will
assume that n� q and κ = blog2 qc can be viewed as the security parameter. ForK ≥ 1 provers and 1 verifier, define
the oracle functionalityMBin in the ideal world as follows:

1. MBin receives public privacy parameters ε and δ. It then computes nb based on Lemma 2.1.

2. Let
(
Jx1Kk, . . . , JxnKk

)
denote the inputs on the k’th prover’s input tape. Each prover Pvk is expected to

compute Xk =
∑n
i=1JxiKk and sends toMBin as its input Xk. A corrupted prover might send an arbitrary

input.

3. MBin samples ∆k ∼ Binomial(nb, 1/2) independently for each input Xk it receives. It then computes

y =
∑K
k=1(Xk + ∆k) (7)

4. MBin sends the tuple (y,∆k) as output to each prover Pvk. On receiving its output, the Pvk sends CONTINUE
toMBin. OnceMBin receives the continue signal from prover Pvk it moves on to deliver output to Pvk+1.

5. After all K provers have sent CONTINUE,MBin sends y as output to the verifier Vfr. If a single prover fails
to send the continue message and thereby exits the protocol early, the verifier and the remaining provers do
not receive any output.

When K = 1, i.e., the trusted curator setting, the single prover receives n client inputs in plaintext, so JxiKk = xi
for all i ∈ [n]. This is equivalent to an adversary corrupting all K provers. Thus in the MPC setting with K ≥ 2
servers, it is safe to assume at least one of them will follow the protocol. Our goal is to be able to come up with an
interactive protocol ΠBin, which allows us to compute MBin verifiably as per Definition 7. Notice that in the ideal
model definition above, the oracle addsK independent copies of DP noise to the output, whereas Lemma 2.1 only calls
for a single copy. This is because, as we allow up to K − 1 provers to collude with a corrupted verifier, the corrupted
provers could simply not add any noise to the output. Ben Or et al. ’s completeness results [BOGW19] imply that K
independent copies of noise are necessary to guarantee differential privacy unless the number of corruptions can be
restricted to being strictly less than K

3 , so each prover must independently generate enough noise to guarantee DP. Our
protocols defined below are secure against computationally bounded provers and verifiers that may deviate arbitrarily
from protocol specifications and have access to auxiliary inputs.

4.1 An Intuitive But Incomplete Protocol

Before describing the full protocol in Section 4.3 and Figure 2, we provide the reader with some intuition as to why
the protocol works for a single curator and verifier. In this section, we make the unrealistic assumption that prover
and verifier behave faithfully. Assume all parties have joint oracle access to OMorra (as described in Section 2.2) to
jointly sample unbiased bits (b1, . . . , bnb). It is easy to see that using (

∑nb
i=1 bi) as DP randomness results in the

desired distribution defined in MBin. However, the oracle output is publicly known to both the verifier and prover;
therefore, it cannot be directly used to guarantee differential privacy. As discussed earlier, this problem of proving that
a prover faithfully sampled random bits without disclosing them lies at the heart of any verifiable DP protocol. Thus
the protocol must combine public coins that satisfy verifiability requirements and private coins that ensure secrecy.

The protocol for verifiable DP counting proceeds in nb identical and independent invocations (run in parallel). In copy
i, the prover samples vi ∈ {0, 1}, which it keeps private. Note that a prover could sample this bit using any arbitrary
bias. As this is the provers’ private coin, the verifier has no control over how the prover generates this information.
After the prover has sampled their private bit, the prover and verifier make one call to OMorra to get an unbiased coin
denoted by bi. Next, the prover locally computes v̂i = bi ⊕ vi. Here ⊕ refers to the boolean XOR operation. It is
easy to see that v̂i has the same distribution as bi, but its value is known only to the parties with access to vi, i.e., the
prover. After nb rounds, the prover computes Q(X) and Z =

∑nb
i=1 v̂i and outputs Q(X) + Z where Z is used as

DP randomness. By the assumption that the prover and verifier are faithful, Z is distributed according to the desired

4Although we describe our protocols with additive secret sharing, any linear secret sharing such as Shamir’s secret sharing also
applies to all our results.
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(a) (b)
Figure 1: Two types of attacks that go undetected in Poplar. In (a) regardless of what the honest client sends, a
corrupted server simply ignores the input and excludes the client from the protocol based on auxiliary information. In
(b) a dishonest client colludes with the corrupted server by revealing secret values, so that an illegal input is included.
In both cases, the honest server cannot distinguish between an honest run and a corrupted run of the protocol.

distribution stated in Theorem 2.1, and its value is only known to the prover. To make this protocol practical, we need
to resolve a few issues.

1. Although the above description requires a bitwise XOR operation to ensure the right distribution is used,
we operate with arithmetic circuits in the actual protocol. Thus, the provers could sample arbitrary values
v∗ ∈ Zq such that v∗ /∈ {0, 1}, and we need to fix how to express the XOR operation via arithmetic circuits.

2. Even if we could verify that the prover sampled a private bit correctly, we still need to verify that they
faithfully performed the local operations discussed above.

Thus, if we could guarantee that each server performed its computations correctly and sampled a private value from
the correct set, we would get the desired outcome of verifiable and DP counting queries.

4.2 Extending To Client-Server MPC-DP

To compute DP histograms verifiably in the client-server MPC-DP setting, we use the same computational model used
for PRIO [CGB17] and Poplar [BBCG+22], two real-world systems deployed at scale by Mozilla5. As discussed
earlier, in this setting n clients secret share their inputs xi ∈ L amongst K ≥ 2 provers, where L ⊆ X defines the
language of legal inputs to the protocol. For computing M -bin histograms over n inputs, L is the set of all one-hot
encoded vectors of size M . For the core problem of a single-dimensional counting query, M = 1 and L = {0, 1}.
Since the inputs on the prover’s tapes reveal no information about a client’s input, for the protocol to be useful the
provers must first verify in zero-knowledge that xi ∈ L before using such inputs to compute aggregate statistics. This
additional step of verifying a client is not required in the trusted curator model, as the prover decides what inputs
should be included in the computation and can see them in plaintext.

Verifying Clients in MPC-DP. Poplar and PRIO use efficient sketching techniques from [BGI16] to validate a client’s
input in zero knowledge without relying on any public key cryptography. Thus, as long as at least one out ofK provers
does not reveal the inputs it received, even an unbounded adversary corrupting the remaining provers cannot ascertain
any information about an honest client’s input. While such a system protects an honest client’s privacy from an
unbounded adversary, it is not verifiable as per Definition 7. Specifically, for the techniques used in PRIO and Poplar,
a single corrupted prover could tamper with its inputs and exclude an honest client from the protocol by forcing them
to fail the verification test. Alternatively, a corrupt client could collude with a prover to include arbitrary inputs,
jeopardising the correctness of the output. Figure 1 summarises these attacks on Poplar and PRIO6. By our definitions
of verifiability, the protocol’s output must be a function of the inputs provided by honest clients only. Thus the protocol
described in Section 4.3 provides the following additional guarantees:

5https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
6Concretely, in scenario (b), the dishonest client reveals the values κ and [v]0 to the server. This allows the server to set

z1 = −z0, z∗1 = −z∗0 and z∗∗1 = −z∗∗0 , thereby admitting an illegal input into the protocol.
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Public Verifier(Vfr) Prover(Pvk)
1 : pp← Setup(1κ) Generate public parameters pp← Setup(1κ)

2 :

{{
ci,k
}
k∈[K]

}
i∈[n]

Client inputs
{

JxiKk, ri,k
}
i∈[n]

3 : Verify using OOR that∀i ∈ [n], xi ∈ L Verify using OOR that∀i ∈ [n], xi ∈ L

4 : (c′1,k, . . . , c
′
nb,k) c′j,k = Com

(
vj,k, svj,k

)
∀j ∈ [nb] Samples and commits vj,k ∈ {0, 1}

5 : ∀j ∈ [nb] Send c′j,k OOR ∀j ∈ [nb] Send openings(vj,k, sj,k)

6 : ∀j ∈ [nb] Check OOR(c
′
j,k) = 1

7 : ∀j ∈ [nb] Send empty string λj OMorra ∀j ∈ [nb] Send empty string λj
8 : Receive (b1,k, . . . , bnb,k) ∀j ∈ [nb] bj,k = OMorra(λj) Receive (b1,k, . . . , bnb,k)

9 : ∀j ∈ [nb] Adjust vj,k based on bj,k, to get v̂j,k

10 : yk yk =

n∑
i=1

JxiKk +

nb∑
j=1

v̂j,k

11 : zk zk =
( n∑
i=1

ri,k +

nb∑
j=1

sj,k
)

12 : Compute ĉ′j,k using bj,k for all j ∈ [bnb ]

13 : Check that
( n∏
i=1

ci,k ×
nb∏
j=1

ĉ′j,k

)
= Com(yk, zk)

Figure 2: The figure above describes the interaction between a single prover and verifier in ΠBin. In the single trusted
curator model K = 1 we have xi = JxiKk where the prover can see client inputs in plaintext. In the MPC setting,
each prover Pvk follows the exact same protocol on their respective inputs specified in Line 2. Thus at the end of the
protocol, each prover Pvk outputs the tuple yk, zk. A public verifier aggregates the output from each prover to publish
verifiable DP statistics.

1. Guaranteed Inclusion Of Honest Clients: If a client submits shares of an input x ∈ L, then the final output
of the protocol is guaranteed to use this input untampered. Thus an honest client is assured that, as long as a
single prover follows the protocol specifications, no one learns any information about their private input and
their input is correctly used to compute the final output.

2. Guaranteed Exclusion Of Corrupt Clients: A corrupted client, even one that has control over any proper
subset of the K provers, cannot include an invalid input to the protocol. Thus if x /∈ L, x is discarded by our
protocol with overwhelming probability.

It is important to note that as we operate under stricter notions of privacy and correctness, our results require the use of
public-key cryptography and security holds only against computationally bounded adversaries. Furthermore, we show
in Section 5 that it is impossible to satisfy verifiable DP and provide information theoretic guarantees.

4.3 Main Protocol Description

The protocol ΠBin described in Figure 2 provides a compact standalone description of the interaction between K
provers and a public verifier for computingMBin. As the verifier is public, anyone (even non-participants to ΠBin) can
see the messages it receives from the clients. We assume that both the provers and the verifier have access to oracles
Omorra and OOR as defined in Section 2.2. In the real world, OMorra is replaced with ΠMorra (see Algorithm 1) and OOR

is replaced by Cramer et al. ’s Σ-OR proof [CDS94] (see Appendix C for an example implementation) which securely
compute the oracle functionalities in the presence of adversaries that may deviate from protocol specifications. Thus,
we define our protocol in the hybrid world, and by the sequential composition theorem7 [Gol07], the security properties
of the protocol are preserved. Next, we describe the protocol in detail with line references to Figure 2:

7Though we use sequential composition, both protocols Πmorra and Πor can be parallelly composed.
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Line 1: In the first step, the prover(s) and verifier agree upon the public parameters for the protocol. The public
parameters include a description of Cpp = Gq,Mpp = X = Y = Zq,Rpp = Zq and a description ofMbin

as defined in equation (7). The group Gq satisfies the requirements of the homomorphic commitment scheme
defined in Section 3.

Line 2: For each client i ∈ [n], let JxiKk denote the k’th share of their input xi ∈ L. Define ci,k = Com
(
JxiKk, ri,k

)
as the commitment to the k’th share of xi. The client sends to each prover Pvk the tuple (JxiKk, ri,k) and

publicly broadcasts the commitments to their shares
(
ci,1, . . . , ci,K

)
to the public verifier observable to all

parties.
Line 3: Similar to PRIO and Poplar, we use L = {0, 1}, and thus verifier and the client use the oracle OOR to check

if the client’s input is indeed a commitment to a bit. For input xi, the verifier sends to OOR the derived
commitment ci =

∏K
k=1 ci,k and the client sends the openings

(
xi,
∑K
k=1 ri,k

)
. The oracle responds with

OOR(ci) = 1 if xi ∈ {0, 1} and ci is a commitment to xi. Note that all messages sent to the verifier are public,
so the servers can independently validate the verifier’s claims. As there is always one honest participant in
the protocol (at least one prover or the verifier), this step provides a public record of honest and dishonest
clients. Such a record resolves the issues presented in Figure 1. From here on, the protocol only uses inputs
from validated clients.

Line 4: Pvk samples (v1,k, . . . , vnb,k) where vj,k ∈ {0, 1} (private random bit) and sends to the verifier commitments
to vj,k for j ∈ [nb]. Let c′j,k = Com(vj,k, sj,k) denote the commitment to vj,k with randomness sj,k. To
enforce consistency in notation and improve readability, we always use c to denote commitments to client
inputs and c′ to denote commitments to the prover’s private inputs. Similarly, we will always use r and s to
denote the randomness used for client input and prover bit commitments, respectively.

Line 5-6: The verifier uses OOR to check if the messages sent by the prover were indeed commitments to 0 or 1. This
step is essential for the boolean to the arithmetic conversion, as the linearisation of the XOR operation is only
valid for values v ∈ {0, 1} (see completeness property of Theorem 4.1).

Line 7-8: If for any i ∈ nb,OOR = 0, the verifier aborts the protocol and publicly declares that Pvk cheated. Otherwise,
once all commitments are verified, the prover and verifier jointly invokeOmorra to get nb public unbiased bits
(b1,k, . . . , bnb,k).

Line 9: For all i ∈ [nb], based on the value of bj,k, the prover sets v̂j,k as follows

v̂j,k =

{
1− vj,k if bj,k = 1

vj,k otherwise.

As long as vj,k ∈ {0, 1}, the above set of equations is equivalent to setting v̂j,k = vj,k ⊕ bj,k. An important
feature of this step is that, conditioned on bj,k, the operations described above are linear. In Line 11, we
describe why this is critical for correctness to hold.

Line 10-11: The prover sends (yk, zk) to the verifier:

yk =
( n∑
i=1

JxiKk +

nb∑
j=1

v̂j,k

)
(8)

zk =
( n∑
i=1

ri,k +

nb∑
j=1

sj,k

)
(9)

where (yk, zk) is the output for prover Pvk
Line 12: Using the common public randomness {bj,k}j∈[nb] generated by Omorra, the verifier updates their view of

received commitments as follows:

ĉ′j,k =

{
Com(1, 0)× c′−1

j,k if bj,k = 1

c′j,k otherwise.

Note that Pvk never opens c′j,k, and thus Vfr never sees v̂′j,k in plaintext. By the hiding property of commit-
ments, an efficient verifier learns nothing about the prover’s private values from these messages. However, as
the update conditioned on bj,k is linear and bj,k is public, Vfr can still compute a commitment to 1 − vj,k
without ever knowing vj,k. As a direct consequence, as discussed in the soundness claim, the prover cannot
deviate from its prescribed linear operation, as the verifier is able to check it. As we will show later, this step
guarantees correctness, soundness and security.

10



Verifiable Differential Privacy

Line 13: Finally, the verifier checks
n∏
i=1

ci,k ×
nb∏
j=1

ĉ′j,k = Com(yk, zk) (10)

From these outputs, we can derive the desired result: we treat the yk’s as shares, and calculate y =
∑K
k=1 yk as the

noisy sum. We next show that this protocol achieves our desired properties.

Theorem 4.1 Let X = (x1, . . . , xn) be the client input. Let MBin and O = (Omorra,OOR) be as defined above.
Assuming ΠBin is run with K ≥ 1 provers and a single verifier, then the following is true

Completeness: For every X ∈ Xn

Pr

out(Vfr, ~Pv) = 0 :

pp← SetupO(1κ)
PvOk ← JXKk, ~rPvk , pp
VfrO ← z, ~rv, pp
y ← ΠOBin( ~Pv, Vfr)

 = 0

where JXKk = (Jx1Kk, . . . , JxnKk) and ~rPvk denotes Pvk’s private randomness.

Computational Soundness: For every X ∈ Xn and any subset I ⊆ [K], let ~Pv∗ denote the collection of provers,
indexed by I , that have been corrupted by an adversary A, such that the final output y 6= MBin(X,Q). Let ~Pv
denote the collection of honest provers not indexed by I . Let z denote the auxiliary input available to A and µ be its
advantage in the discrete log game (Definition 9)

Pr

out(Vfr, ~Pv∗, ~Pv) = 1 :

pp← SetupO(1κ)
PvOk ← JXKk, ~rPvk , pp
VfrO ← z, ~rv, pp

y ← ΠOBin

(
( ~Pv, ~Pv∗), Vfr

)
 ≤ µ(κ)

Note that as I ⊆ [K], soundness, as defined above covers both the MPC and the trusted curator setting.

Computational Zero-Knowledge: Let ~Pv∗ denote the collection of provers, indexed by I ⊂ [K], that have been
corrupted by a corrupt verifier Vfr∗. There exists a PPT Simulator Sim(Vfr∗,I) such that for all y =M(X,Q)

View

[
Π
(

( ~Pv, ~Pv∗), Vfr∗, pp
)]

c≡ Sim(Vfr∗,I)(y, ~rv, z, pp)

where z ∈ {0, 1}poly(κ) and ~rv ∈ {0, 1}poly(κ) represents auxiliary input and randomness available to all the cor-
rupted parties.

Proof 1

1. Completeness: By the definition ofOmorra, (b1,k, . . . , bnb,k) are all unbiased bits. As per ΠBin, when bj,k = 1,
v̂j,k = 1−vj,k and when bj,k = 0, v̂j,k = vj,k. We know that an honest prover is guaranteed to have sampled
a private value vj,k ∈ {0, 1} for all j ∈ [nb]. Thus the case-wise arithmetic operation described above is

equivalent to setting v̂j,k = vj,k ⊕ bj,k. This implies that for each server v̂j,k
R←− {0, 1} and

∑nb
j=1 v̂j,k ∼

Binomial(nb, 1/2). The output of each honest prover is thus yk = Binomial(nb, 1/2) +
∑n
i=1JxiKk. By

linearity of secret-sharing,
∑
k∈[K] yk =MBin(X,Q) whereMBin is defined in equation (7).

2. Soundness: Beyond exiting the protocol early (which is trivially detected), an adversary A controlling a
collection of dishonest provers could force a prover to cheat by doing at least one of the following:

(a) (Cheat at Line 4): For any j ∈ [nb], c′j,k is not a commitment to a bit. As the verifier has access to oracle
OOR, it would detect this immediately. Thus we can be guaranteed that c′j,k are commitments to 1 or 0.

(b) (Cheat at Line 7): The prover could sample improper public randomness. However, this is impossible
as the verifier and prover jointly use OMorra to generate randomness.
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(c) (Cheat at Line 10): Output messages (y′k 6= yk, z′k 6= zk). If the verifier check from (Line 12) fails
then the verifier knows Pv∗k cheated. If Com(yk, zk) =

∏n
i=1 ci,k ×

∏nb
j=1 ĉ

′
j,k = Com(y′k, z

′
k), then A

has broken the binding property of the commitment scheme. As A has negligible success in winning the
discrete log game, it has a negligible chance at breaking the commitment scheme.

These are the only places where the Pv∗ sends a message to the Vfr and thus we have our result.

3. Zero-Knowledge: To prove zero knowledge we need to explicitly define the commitment scheme we are using.
We use Pedersen Commitments which are defined as follows

Com(x, r) = gxhr (11)

whereRpp =Mpp = Zq and Cpp = Gq an abelian group where the discrete log problem is hard. To enhance
readability, we will prove security for K = 2 provers and one verifier, but the result trivially generalises
to K ≥ 2 provers. To avoid confusion between the MPC and single curator setting, we defer the simpler
security proof for single curators to Appendix D. Without loss of generality, assume that the verifier Vfr∗ and
Pv1 have been corrupted by a PPT adversary A and that Pv2 is honest. Sim receives on its input tape the
inputs for Pv1 and Vfr∗. The ideal oracle functionalityMBin is defined as before. Let Sim denote shorthand
for SimVfr∗,Pv1 . We construct the simulator as follows:

(a) Sim receives the public messages

{{
ci,k

}
k∈[K]

}
i∈[n]

and sets ci =
∏K
k=1 ci,k.

(b) Sim internally invokes Pv1 to receive inputs X1. If Pv1 was honest then X1 =
∑n
i=1JxiK1. Of course,

we have no control overA, and X1 could be any arbitrary value. The definition of security requires that
we prove security using the actual inputs used by the real-world adversary A and not the ones it was
handed to at the start of the protocol.

(c) Sim invokesMbin with input X1 and receives (y,∆1) as defined in equation (7). Note Sim never has
access to the honest party’s input X2 nor the randomness ∆2 used by Pv2 in the real protocol. It must
simulate the messages and output of the real protocol from just its input and the output it receives from
the ideal model.

(d) Sim sets y1 = X1 + ∆1 and computes y2 = y − y1, which by the definition of MBin, is equal to
(X2 + ∆2).

(e) Sim samples z2
R←− Rpp and sets c2 = Com(y2, z2).

(f) Sim samples c′2,2, . . . , c
′
nb,2

such that c′j,2 = Com(1, sj,2) where sj,2
R←− Rpp. It sets c′1,2 = g1a2 where

a2 = c2×
(∏nb

j=2 ĉ
′
j,2

)−1

×
(∏n

i=1 ci,2

)−1

× g−1. Notice that Sim is actually unable to open c′1,2 but
is never required to do so, as opening a commitment to a private value violates DP. The only information
A can check is if c′1,2 is a commitment to a bit, which it is. Thus the simulator artificially constructs
a set of commitments that align like the real-world protocol, without having the slightest idea what the
randomness used by Pv2 actually was. It is able to do so due to the hiding property of the commitment
scheme.

(g) Sim sends over {cj,2}j∈[nb] to A pretending to be the honest prover (Line 4 of Figure 2).
(h) Sim pretends to be the prover and jointly invokes OMorra with A to sample nb unbiased public bits

(b1,2, . . . , bnb,2).
(i) Finally Sim sends y2 and z2 to A and outputs whatever A outputs.

5 Separation Under Verifiable DP

We show that information theoretic verifiable DP is impossible in the trusted curator model. To prove our result stated
in Theorem 5.2, we rely on the impossibility of secure coin flipping by [HO14].

Theorem 5.1 (Impossibility Of Tossing A Fair Coin) [HO14] Let (Pv, Vfr) be a coin tossing protocol and letBλ =
E[out(Pv, Vfr)(1κ)] be the bias of the output of such a protocol. Assuming that one-way-functions do not exist, then
for any g ∈ poly(κ), there exists a pair of efficient cheating strategies Pv∗ and Vfr∗ such that the following holds: for
infinitely many κ’s, for each j ∈ {0, 1} either Pr[out(Pv∗, Vfr)(1κ) = j] or Pr[out(Pv, Vfr∗)(1κ) = j] is greater
than

√
Bjκ − 1

g(κ) , where B1
κ = Bλ and B0

κ = 1 − Bλ. In particular for Bλ = 1
2 , the corrupted party can bias the

outcome by almost 1√
2
− 1

2 .
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The theorem above states that it is impossible for two unbounded parties to jointly sample an unbiased public coin.
The result is stronger than the impossibility result by Cleve [Cle86], which states that its impossible to jointly flip an
unbiased coin if we allow parties to exit early. The theorem above states that it’s impossible even if we guarantee no
party exists the protocol early.

Theorem 5.2 (Information Theoretic Verifiable DP is impossible) Any constant round interactive protocols Π for
an DP-mechanismMBin that satisfies Verifiable-DP (Definition 7) cannot have unconditional soundness and statisti-
cal zero-knowledge.

Proof 2 Verifiable DP requires that a verifier be able to guarantee that the randomness generated by a prover remains
unbiased, without the verifier ever seeing the randomness. Theorem 5.1, states that it is impossible for two unbounded
parties to even jointly sample a public unbiased coin without assuming one way functions. Thus commitment schemes
are both necessary and sufficient to jointly sample an unbiased public coin.

The task of jointly sampling unbiased private randomness is harder. If two parties could sample unbiased private
randomness, then they could just use the same protocol to sample unbiased public randomness, by revealing the
randomness. Thus, commitment schemes are a necessary condition for verifiable DP. Commitments cannot be both
statistically binding and hiding, thus unbounded soundness and statistical zero-knowledge is impossible.

Connection With Open Problem.

Definition 8 (α-useful mechanism) Fix α ∈ [0, 1]. Let u : Xn × Y →∈ {0, 1} be an efficiently computable deter-
ministic function. A mechanismM is α-useful for a utility function u if for some Q ∈ Q and for all X ∈ Xn

Pr
y←M(X,Q)

[u(X, y) = 1] ≥ α (12)

In his survey on the complexity of DP, Vadhan [Vad17] asks the following question. GivenX ∈ Xn and a differentially
private mechanismM : Xn × Q → Y , is there an efficient utility function u that is α-useful whenM is IND-CDP
but not whenM is information-theoretically DP. Groce et al. [GKY11] show that if the range of u is in Rn and the
utility is measured in terms of the Lp-norm, then statistical-DP and computational DP are equivalent. Thus for the
separation to hold, the range of u must have a more complex structure, such as a graph, a circuit or a proof. Bun et al.
corroborate this result by describing a utility function such that u is infeasible (not impossible) whenM is statistical
DP and efficient whenM is computational DP [BCV16]. Similar to our definition of verifiability, their utility function
u is cryptographic and unnatural from a data analysis point of view. Specifically, given y = M(X,Q), Bun et al. ,
define the utility as the answer to the question of whether y is a valid zap proof [DN00] of the statement “there exists a
row inX that is a valid message signature pair”. Meanwhile, we define our utility function as an interactive proof, that
checks whether the real protocol output y, is indistinguishable from the output of an ideal run ofM. In Theorem 5.2,
we show that verifiable DP is impossible in the presence of computationally unbounded adversaries. This provides a
candidate for a separation between statistical DP and computational DP.

However, there are some key differences between our formulation of utility and how it was originally posed. For
example, in Bun et al. , the utility function u is a deterministic non-interactive function that receives the output y
and a dataset X of message-signature pairs. The task of evaluating utility is separate from the task of computing
DP statistics. In verifiable DP, both the DP statistic and utility are computed simultaneously via a constant round
interactive protocol. Furthermore, the number of rounds of the utility function is a function of the privacy parameter
ε. Another point of difference is that, in verifiable DP, the verifier performs the dual role of evaluating the utility of
the mechanism and generating randomness that prevents a curator from cheating (although it does not ever see this
randomness). In Bun et al. , the verifier’s task is just to verify the proof. They are not involved in generating the DP
noise. Although we show that information theoretic verifiable DP is impossible, our definitions allow the adversary
more agency. Thus the two settings are not directly comparable. We defer finding stronger connections between
verifiable DP and finding a utility function that separates DP as per [Vad17] to future work.

6 Performance

This section quantifies the computational cost of ΠBin, our protocol for computing verifiable DP counting queries.
In the trusted curator model, the non-verifiable protocol simply involves summing over n inputs, sampling one draw
of Binomial noise and aggregating the results. Meanwhile, verifiable DP requires computing commitments for nb
private coins, sending the verifier a non-interactive OR proof (as described in Appendix C) that the messages are
commitments to either zero or one, playing nb rounds of Πmorra and performing exponentiation operations to check if
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Table 1: The table above benchmarks the latency of each of the different stages of ΠBin for computing single dimension
counting queries with parameters n = 106, ε = 1.25, δ = 2−10. Setting ε = 0.88 results in nb = 262144 private coins
for DP.

Σ-proof Σ-verification Morra Aggregation Check
6609 ms 6708 ms 4987 ms 198 ms 263 ms

(b)(a)

(c) (d)

Figure 3: The figure above describes the latency of the two most expensive operations in ΠBin - the time it takes to
prove and validate that the prover’s private value is indeed a bit. The smaller the privacy parameter ε (high privacy),
the more private coins nb are needed to provide DP.

the prover messages align. In our experiments, we instantiate the commitment scheme using Pedersen Commitments
(PC) [Ped91] and consider two choices for the prime order group Gq for PC. In what follows, we adopted Gq ⊂ Z∗p
based on the finite field discrete log problem8. We also implemented Pedersen commitments over elliptic curves using
the prime order Ristretto group9, which gave slower results. A single exponentiation operation on an 8 core Apple M1
Mac took 35 µs for Gq ⊂ Z∗p and 328 µs over Curve25519. All results and plots are reproducible using code found at
https://anonymous.4open.science/r/Verifiable-Differential-Privacy-0407/README.md.

Time cost for server verification. In Table 1 we describe the latency of the different phases of ΠBin. The protocol’s
main computational bottleneck is verifying that the commitments to the prover’s private values are indeed commit-
ments to bits. Thus most of the time is spent creating and verifying non-interactive Σ-proofs. The aggregation column
describes how long the prover takes to aggregate n elements of size κ bits, and the check column describes the time
it takes the verifier to compute commitments to check that the prover’s messages align with the commitments. The
Morra column describes the time it takes to sample nb public coins using Πmorra. We measure time spent doing local
computations, and do not include time spent to communicate over the network. As working with the Σ-proof is our
main bottleneck, Figure 3 describes how proof creation and verification latency scales with the privacy parameter ε.
Note that for high privacy settings (small values of ε), the prover(s) need to generate more private coins to ensure
indistinguishability. Specifically, the number of coins (nb) is proportional to 1/ε2 (Lemma 2.1), and the time cost is
then linear in nb.

Time cost for client verification. Clients submit secret shares of their inputs in the MPC setting. Thus the servers
must verify that the client inputs are valid. ForM -dimensional DP-histogram estimation, the client inputs are restricted
to one-hot encoded vectors of size M . As discussed in Section 4.2, the sketching techniques used in PRIO and Poplar
allow servers to verify clients with information-theoretic security but are vulnerable to attack by malicious servers.
Our use of Σ-OR-protocols can defend against such attacks, but it comes at a higher computational cost due to its
reliance on public key cryptography. Figure 4 benchmarks the increase in latency as a function of the number of input
dimensions (M ) of the secret shares. In both cases, the cost grows with the dimensionality of the input. The cost
of making client verification robust to malicious servers is approximately an order of magnitude. The Σ protocol for
verification can be run on each input dimension in parallel, and thus computation can be sped up using more cores.
However, this increases the communication bandwidth of the protocol.

8Implemented using https://docs.rs/openssl/latest/openssl/bn/struct.BigNum.html
9https://doc.dalek.rs/curve25519_dalek/ristretto/struct.RistrettoPoint.html
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(b)(a)

(c) (d)

Figure 4: The figure above compares the times it takes to verify if a single client input is valid. PRIO and Poplar use
lightweight sketching protocols and general-purpose MPC to check in zero knowledge whether a client’s input is a
one-hot vector. Instead, we use the Σ-OR proof to check if each coordinate of a client is legal.

Table 2: Summary of efforts MPC computation of aggregate DP statistics. The active security column describes if the
protocols allowed participants to deviate arbitrarily. The Central DP column describes if the protocol output satisfies
constant DP error independent of the number of clients participating in the protocol. The auditable property describes
if the final output can be verified for correctness. Some interactive protocols leak additional information (such as
prefix information about client input bits) beyond just the DP output. The leakage column describes if the prescribed
protocols suffered from additional leakage.

Protocol Active Security Central DP Auditable Zero Leakage

Cryptographic RR [AJL04] X X
Verifiable Randomization Mechanism [KCY21] X X X
Securely Sampling Biased Coins [CSU19] X X
MPC-DP heavy hitters[BK21] X X
PRIO [CGB17] X X
Brave STAR [DSQ+21]
Sparse Histograms [BBG+20] X
Crypt-ε [RCWH+20] X
Poplar [BBCG+22] X X
Our work X X X X

7 Related Work

Dwork et al. introduced DP and described the Laplace mechanism for outputting histograms in the trusted curator
model [DMNS06]. Soon after, McSherry et al. proposed the exponential mechanism [MT07] (equivalently, report
noisy max [DKS+21]), which lets us compute the (approximately) most frequent bucket in a histogram, also under
pure differential privacy. Although these mechanisms give us pure differential privacy and optimal error rates O( 1

ε ),
implementing such a “central” model requires trusting that the curator to follow the protocol and not exploit the client
data that it sees in plaintext.

Therefore, researchers studied local privacy (LDP) [KLN+11] using randomised response [War65] to prevent any
other party from seeing data in plaintext. Recently, Cheu, Smith and Ullman showed that the randomised response
algorithm generalises all locally private protocols [CSU21]. This generalisation highlights two unavoidable disad-
vantages of local differential privacy. The first is that the accuracy of the protocol for even the binary histogram is
O(
√
n) compared to O(1) in the central model. The second is that randomised response systems offer a much weaker

definition of privacy than the usual cryptography standards such as semantic security. For example, if the client flips
their original answer with probability p = 0.1, the curator sees their sensitive information in plain text 90% of the
time. Further increasing p reduces the accuracy of the protocol dramatically. Consider the example from [CGB17],
where 1% of a million people answer “yes” to a survey about a sensitive topic. If we set p = 0.49, then one-third of
the time the central analyser concludes that not a single member of the population answered “yes”. Thus if we want
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to preserve utility, this definition of security is considerably weaker than the indistinguishability guarantees provided
by protocols such as secret sharing.

Shuffle privacy [Che21, BBGN19, EFM+20] analyses local mechanisms under the lens of central privacy and bridges
the accuracy gap between local and central models. Recent results [GGK+19, BC20] prove that near central error
guarantees are possible with distributed local transformations. Although this bypasses the accuracy issue of LDP,
shuffle privacy assumes the existence of a secure shuffler, which is non-trivial to implement. In recent work, Bell et
al. show that secure aggregation realises secure shuffling [BBG+20]. However, such protocols impose the impractical
constraint of secure peer-to-peer communication between clients, and the curator is still a single source of failure.
Despite the immense progress on differentially private histogram estimation, all known efficient implementations
assume semi-honest participants and are a variant of either randomised response or the additive mechanism. It only
takes a small fraction of clients to deviate from their prescribed protocol to destroy any utility of randomised response
[CSU21]. Additive mechanisms involve adding carefully curated randomness to the statistic before being released as
output.

To ensure central DP error without a trusted curator, Dwork et al. proposed using standard MPC for computing DP
statistics [DKM+06]. They proposed that each of the K servers would own a fraction of the entire dataset used for
computation. As long as not more than bK3 c of the servers are dishonest, it is possible to compute DP-histograms with
optimal accuracy. However, the protocol is not publicly auditable and breaks down in presence of a dishonest majority
of adversarial corruptions. McGregor et al. show a separation between DP obtained using a trusted curator and that
obtained using MPC [MMP+10]. Specifically, they show that there exist computations (such as inner product or ham-
ming distance) where mechanisms with (1, 0)-DP incur Ω(

√
n) reconstruction error compared to O(1) in presence of

a trusted curator. To bridge this gap, Mironov et al. defined computational differential privacy, a relaxation of tradi-
tional DP [MPRV09]. They show that as long as semi-honest OT exists, it is possible to compute any computationally
DP function with the same error rates as information theoretic DP in a trusted curator model. Histograms, unlike inner
product and hamming distance, can be computed using MPC with the same error rates as trusted curator DP, under
infomation theoretic DP. Thus recent work has focused on computing histograms using MPC.

Bohler et al. use MPC to compute heavy hitters with semi-honest adversaries [BK21]. Researchers at Brave use
oblivious pseudorandom functions (OPRF’s) [JL09] and Shamir secret sharing [Sha79] to compute k-anonymous his-
tograms in the two server setting [DSQ+21]. However, they do not include support for differential privacy. Researchers
at Google use linear homomorphic encryption and OPRFs to compute differentially private sparse histograms in two-
server models (2PC) [BGG+22], but require both the servers and clients to be semi-honest. Gibbs and Boneh propose
PRIO, a protocol in which a small number of servers receive arithmetic shares of client input to compute differentially
private histograms [CGB17]. PRIO uses shared non interactive proofs (SNIP’s) to prevent clients from submitting
illegal inputs but the protocol is only honest-verifier zero knowledge. Following the popularity of PRIO, Addanki et
al. introduce PRIO+ to work over Boolean shares [AGJ+22]. Boneh et al. use distributed point functions (DPFs)
[BGI19] to compute DP heavy-hitters in the two server model to propose a system called Poplar [BBCG+22] that is
zero knowledge even in presence of active adversaries. Roy et al. introduce Crypt-ε, a generic system to compute
differentially private statisitcs using garbled circuits and linear homomorphic encryption [RCWH+20]. The general
purpose natue of Crypt-ε guarantees security only in the semi-honest threat model. Ambainis et al. proposed crypto-
graphic randomised response [AJL04] but are able to only guarantee local differential privacy. Table 2 summarises the
assumptions under which the latest MPC protocols that have been used to compute DP statistics. As described earlier,
existing work either assumes semi-honest adversaries or is not auditable. In 2021, the State Of Alabama sued the
US deparment of commerce with regard to the errors caused due to random noise [Jus21]. Differential Privacy by its
defintion introduces a random noise blanket that tradesoff accuracy for privacy. This randomness is unavoidable if we
wanted to protect individual privacy, but it also enables a corrupt aggregating server to disguise adversarial behaviour
as randomness. In our paper, we first upgrade to security against active adversaries. Like existing literature we work
in the dishonest majority model and further require the protocols to be publicly auditable. Our privacy constraints
describe the most strict adversarial setting for practical deployment.

8 Concluding Remarks

We have introduced the notion of verifiable differential privacy to prevent malicious aggregators using random noise
as an attack vector. We have demonstrated feasibility of this notion, and showed that computational DP is necessary to
achieve verifiability. A natural open question is to provide protocols for more complex DP mechanisms. Our protocol
deliberately uses simple randomness (a Binomial distribution constructed from Bernoulli random variables), as making
verifiable Laplace or Gaussian noise is far from clear. Similarly, approaches based on sampling from an appropriate
distribution (the exponential mechanism) may be challenging, since the distribution itself leaks information about the
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private data. Another direction would be to support our approach within more expressive MPC frameworks (e.g.,
auditable-SPDZ [BDO14]).
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[BBGN19] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model. In
Annual International Cryptology Conference, pages 638–667. Springer, 2019.

[BC20] Victor Balcer and Albert Cheu. Separating Local & Shuffled Differential Privacy via Histograms.
arXiv:1911.06879 [cs], April 2020. arXiv: 1911.06879.

[BCV16] Mark Bun, Yi-Hsiu Chen, and Salil Vadhan. Separating computational and statistical differential privacy
in the client-server model. In Theory of Cryptography Conference, pages 607–634. Springer, 2016.
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[BK21] Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially private heavy
hitters. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 2361–2377, 2021.

[Blu83] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT
News, 15(1):23–27, 1983.

[BMRS21] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and Peter Scholl. Mac’n’cheese : Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In Annual International Cryptology
Conference, pages 92–122. Springer, 2021.

[BOGW19] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Providing Sound Foundations for Cryptography: On the Work
of Shafi Goldwasser and Silvio Micali, pages 351–371. 2019.

17



Verifiable Differential Privacy

[BS22] Danah Boyd and Jayshree Sarathy. Differential perspectives: Epistemic disconnects surrounding the us
census bureaus use of differential privacy. Harvard Data Science Review (Forthcoming), 2022.
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A Formal Security Definitions

Definition 9 (Discrete Log Assumption) For all PPT adversaries A, there exists a negligible function µ such that

Pr

x = x′ :

(Gq, g)← Setup(1κ)

x
R←− Zq, h = gx

x′ ← A(pp, h)

 ≤ µ(κ)

Definition 10 (Hiding Commitments) Let κ be the security parameter. A commitment scheme is said to be hiding for
all PPT adversaries A the following quantity is negligible. The commitment is perfectly hiding if µ(κ) = 0.

Pr

b = b′ :

pp← Setup(1κ)

b
R←− {0, 1}, rxb

R←− Rpp
(x0, x1) ∈M2

pp ← A(pp)
c = Com(xb, rxb), b

′ = A(pp, c)

 ≤ µ(κ)

Definition 11 (Binding Commitments) Let κ be the security parameter. A commitment scheme is said to be binding if,
for all PPT adversaries A, there exists a negligible function µ such that

Pr

[
(cx0

= cx1
) ∧ (x0 6= x1) :

pp← Setup(1κ)
x0, rx0 , x1, rx1 ← A(pp)

]
≤ µ(κ)

The commitment is perfectly binding if µ(κ) = 0.

B The Binomial mechanism

In this Appendix, we spell out the details of the differential privacy properties of Binomial noise addition (the Binomial
mechanism). The results here were originally shown by Ghazi et al. [GGK+20], and we include them here for
completeness (we do not claim any novelty in this section).

Definition 12 [GGK+20] A function q : Xn → ZM is said to be k-incremental if for all neighbouring datasets
X ∼ X ′, ||f(X)− f(X ′)||∞ ≤ k.

It is easy to see that counting queries for histogram estimation are 1-incremental. The following definition describes
valid noise distributions to ensure differential privacy.

Definition 13 [GGK+20] A distribution D over Z is (ε, δ, k)-smooth if for all k′ ∈ [−k, k] we have

Pr
Y∼D

[
PrY ′∼D[Y ′ = Y ]

PrY ′∼D[Y ′ = Y + k′]
≥ e|k

′|ε

]
≤ δ (13)

The result for the Binomial mechanism follows by showing that adding noise drawn from a smooth distribution ensures
differential privacy and then showing that the Binomial distribution meets the smoothness definition.

Lemma B.1 (Lemma 4.11 in Appendix C of [GGK+20]) Suppose q : Xn → ZM is k-incremental i.e., for all
neighboring datasets X ∼ X ′ we have ||q(X) − q(X ′)||∞ = k and ∆(q) = ||q(X) − q(X ′)||1 = ∆. Let D be
a (ε, δ, k)-smooth distribution. Then the mechanism M

M(Y1,...,YM )(X, q) = q(X) + (Y1, . . . , YM ) (14)

is (ε∆, δ∆) differentially private, where (Y1, . . . , YM )
i.i.d∼ D.

Proof 3 Let X = (x1, . . . , xn) where xi ∈ X and X ′ = (x1, . . . , x
′
n). Let ~y = (y1, . . . , yM ) and ~Y = (Y1, . . . , YM )

be i.i.d draws from D. Assume that Equation (15) holds:

Pr
~y∼D

[g(~y) ≥ eε
′
] ≤ δ′ (15)

where g(~y) =
Pr(~Y∼D) [M~Y (X,q)=q(X)+~y]

Pr(~Y∼D) [M~Y (X′,q)=q(X′)+~y] .
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Let S ⊆ ZM be an arbitrary subset in the range of M . Let T = {M~Y (X, q)|g(~y) < eε
′} represent a set of outputs of

M over draws of ~Y such that g(~y) < eε
′
. Then from equation (15) we can show that M is (ε′, δ′) differentially private

Pr
~y∼D

[M~y(X,q) ∈ S] ≤ δ′ + Pr
~y∼D

[M~y(X, q) ∈ S ∩ T ] (16)

= δ′ +
∑

w∈S∩T
Pr
~y∼D

[M~y(X, q) = w] (17)

≤ δ′ +
∑

w∈S∩T
eε
′

Pr
~y∼D

[M~y(X ′, q) = w] (18)

≤ δ′ +
∑
w∈S

eε
′

Pr
~y∼D

[M~y(X ′, q) = w] (19)

= δ′ + eε
′

Pr
~y∼D

[M~y(X ′, q) ∈ S] (20)

Equation (16) is from the law of total probability, equation (18) comes from equation (15) assumption and equation
(19) is true as T ∩ S ⊆ S. Therefore all that remains is to show that equation (15) is true if D is as defined and
ε′ = ε∆, δ′ = δ∆ to complete the proof.

Define kj = q(X)j−q(X ′)j . As each coordinate of q(X) is independently perturbed and q is a deterministic function,
equation (15) is equivalent to equation (21).

Pr
~y∼D

[
M∏
j=1

Pr(Yj∼D) [Yj = yj ]

Pr(Yj∼D) [Yj = yj + kj ]
≥ eε

′

]
≤ δ′ (21)

Thus, in order to prove equation (15) is true, it suffices to show that equation (21) holds. We know that D is a smooth
distribution i.e for each j ∈ [M ]

Pr
~y∼D

[
Pr(Yj∼D) [Yj = yj ]

Pr(Yj∼D) [Yj = yj + kj ]
≥ e|kj |ε

]
≤ δ (22)

We can apply the union bound to get the probability of the joint distribution over all indices.

Pr
~y∼D

[
M∏
j=1

Pr(Yj∼D) [Yj = yj ]

Pr(Yj∼D) [Yj = yj + kj ]
≥ e

∑m
j=1 |kj |ε

]
(23)

≤ δ
M∑
j=1

I(kj 6= 0) (24)

Given the sensitivity of q is ∆, at most ∆ indices for kj can be non-zero and (
∑M
j=1 |kj |) ≤ ∆. Finally we get the

result we seek

Pr
~y∼D

[
M∏
j=1

Pr(Yj∼D) [Yj = yj ]

Pr(Yj∼D) [Yj = yj + kj ]
≥ e∆|kj |ε

]
≤ δ∆ (25)

Lemma B.2 (Based on Lemma 4.12 of Appendix C in [GGK+20]) Let n ∈ N, p ∈ [0, 1/2], α ∈ [0, 1) and k ≤
nαp

2 . Then the binomial distribution Bin(n, p) is a (ε, δ, k)-smooth distribution.

Proof 4 Let Y ∼ Bin(n, p), then Pr [Y = y] =
(
n
y

)
py(1 − p)n−y . For any −k ≤ k′ ≤ k, define an interval

ε := [(1 − α)np + k′, (1 + α)np − k′]. This an interval of size k around the mean of the distribution. Note that as
long as k ≤ np

2 α, then the interval ε′ := [(1− α/2)np, (1 + α/2)np] is contained inside of ε. Thus if y ∼ Bin(np) is
not in ε, it is also not inside ε′. We know how to bound the probability that y /∈ ε′ by using the multiplicative Chernoff
bound. Invoking it, we get

Pr
y∼Bin(n,p)

[y /∈ ε] ≤ Pr
y∼Bin(n,p)

[y /∈ ε′]

≤ e−
−α2np

8 + e−
−α2np
8+2α

= δ
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Now for all y ∈ ε, we have for 0 ≤ k′ ≤ k

Pr [Y = y]

Pr [Y = y + k′]
=
(1− p

p

)k′ k′∏
i=1

y + i

n− y − i+ 1
(26)

≤
(1− p

p

)k′( y + k′

n− y − k′
)k′

(27)

≤
(1− p

p

)k′( (1 + α)np

n− (1 + α)np

)k′
(28)

= (1 + α)k
′
( 1− p

1− p− pα

)k′
(29)

(28) comes from our assumption y ∈ ε and so when y = (1 + α)np− k′ the ratio above is maximal.

Similarly for −k ≤ k′ ≤ 0 we have

Pr [Y = y]

Pr [Y = y + |k′|]
=
( p

1− p

)|k′| |k′|∏
i=1

n− y + i

y − i+ 1
(30)

≤
( p

1− p

)|k′|(n− y + |k′|
y − |k′|

)|k′|
(31)

≤
( 1 + pα− p

(1− α)(1− p)

)|k′|
(32)

≤
(1 + α

1− α

)|k′|
(33)

= e|k|ε (34)

(32) comes from plugging in the smallest value for y and (33) comes from the fact that p ≤ 1/2. It is easy to see that
when p ≤ 1

2 , that we have

( 1− p
1− p− pα

)k′
≤
( 1

1− α

)|k′|
(35)

Therefore we can upper bound equation (29) by setting

(1 + α)k
′
( 1− p

1− p− pα

)k′
≤ e|k|ε (36)

Finally, we can prove smoothness using Bayes’ rule. Let g(y) =
PrY∼Bin(n,p)[Y=y]

PrY∼Bin(n,p)[Y=y+k′] and D = Bin(n, p). Then:

Pr
y∼D

[
g(y) ≥ e|k

′|ε
]
≤ Pr
y∼D

[
g(y) ≥ e|k

′|ε
∣∣∣y /∈ ε]+ δ

≤ e−
−α2np

8 + e−
−α2np
8+2α

≤ δ

(37)

(37) comes from the fact that when y ∈ ε we have Pr [Y=y]
Pr [Y=y+k′] ≤ eε|k′| by how we defined ε in equation (33). So we

have

Pry∼Bin(n,p)

[
PrY∼Bin(n,p)[Y=y]

PrY∼Bin(n,p)[Y=y+k′] ≥ e
|k′|ε
∣∣∣y /∈ ε] = 0

Putting all this together, we can now prove Lemma 2.1:

Proof 5 (Proof of Lemma 2.1) From the definition of k-incremental functions in Definition 12 of Appendix B, it is
easy to see that the counting query is 1-incremental and has global sensitivity ∆ = 1. So, by Lemma B.1 in Appendix B
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if we add noise Z ∼ D whereD is (ε, δ, 1)-smooth we get our result. Thus if we could show that Bin(nb,
1
2 ) is (ε, δ, 1)-

smooth we would be done.

From Lemma B.2 in Appendix B we have that for α = eε−1
eε+1 and k ≤ nbαp

2 , where p ≤ 1
2 , the binomial distribution

Bin(nb, p) is (ε, δ, k)-smooth, where δ ≥ e−
−α2nbp

8 + e−
−α2nbp

8+2α . Observe that by the definition of α, for all ε ∈ [0, 1],
α ≥ ε√

5
. Setting p = 1

2 , we could write

nbpα ≥ nb
ε

2
√

5
(38)

All we need is an adequate value for ε ∈ [0, 1] by which we get nbpα ≥ 2, which would prove that Bin(nb,
1
2 ) is

1-smooth. Notice that

e−
−α2nbp

8 + e−
−α2nbp

8+2α ≤ 2e−
−α2nbp

10 ≤ 2e−
−ε2nbp

50 = δ (39)

Re-arranging the terms and setting p = 1
2 we get ε = 10

√
1
nb

ln 2
δ . Plugging it back into equation (38) we get

nbp
ε√
5

=
ε

2
√

5
= nb

√
1

5nb
ln

2

δ
≥
√
nb
5

ln 2

≥ 2 for nb > 30

Therefore we have shown that Bin(nb,
1
2 ) is (ε, δ, 1)-smooth

Verifier Prover
1 : Common Input g, h,Gq, q, c

2 : v1, e1
R←− Z2

q

3 : Set d1 such that d1
( c
g

)e1
= hv1

4 : b
R←− Zq and set d0 = hb

5 : (d0, d1) (d0, d1) (d0, d1)

6 : e
R←− Zq e e0 = e− e1 mod q

7 : v0 = b+ e0r

8 : Check e1 + e0 = e (v0, e0, v1, e1)

9 : Check d0ce0 = hv0 and d1ce1 = ge1hv1

Figure 5: Proof for convincing Vfr that c = ghr is in LBit without revealing that x = 1.

C OR Protocol

Define as public parameters a cyclic prime order group Gq and generators g and h for Gq . LetMpp = Rpp = Zq .
Pedersen Commitments defined below satisfy all the properties described in Section 2.2.

Com(x, rx) = gxhrx (40)

For the sake of completeness, we describe the interactive disjunctive OR proof using Σ-protocols from [CDS94]. In
all implementations in this paper, we use the Fiat-Shamir transform, which makes protocols non-interactive and can be
shown to be secure in the random oracle model as described in [Tha20]. Note we choose the non-interactive version
for efficiency reasons but the Σ protocols are zero-knowledge even without a random oracle. Maurer [Mau09] shows
that if the verifier’s challenge space is polynomial sized then the protocol can be shown to be zero-knowledge. This
does affect the soundness of the protocol but it can be made negligible by a constant number of repetitions. Damgard
et al. show that by using Trapdoor commitments [Dam00], one can preserve soundness and get zero-knowledge but
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Verifier Prover
1 : Common Input g, h,Gq, q, c

2 : v0, e0
R←− Z2

q

3 : Set d0 such that d0ce0 = hv0

4 : b
R←− Zq and set d1 = hb

5 : (d0, d1) (d0, d1) (d0, d1)

6 : e
R←− Zq e e1 = e− e0 mod q

7 : v1 = b+ e1r

8 : Check e1 + e0 = e (v0, e0, v1, e1)

9 : Check d0ce0 = hv0 and d1ce1 = ge1hv1

Figure 6: Proof for convincing Vfr that cx = hrx is in LBit without revealing that x = 0.

the protocol now has 4 messaging rounds instead of 3. Next we describe the Σ-protocol that can used to verify the OR
condition.

Let x ∈ {0, 1} and cx = Com(x, rx) for rx
R←− Zq be the commitment to x. Given cx, ΠOR is an interactive zero-

knowledge proof between a prover Pv and a verifier Vfr to show that cx ∈ LBit. The security properties can be found
in [Tha20, Dam00, CDS94].

LBit = {cx : x ∈ {0, 1} ∧ cx = Com(x, rx)} (41)
where for some rx ∈ Zq . Based on the value for x, the prover uses the protocol described in Figure 5 or Figure 6. The
verifier cannot distinguish between the protocol’s two runs as the messages are indistinguishable. In case the the inputs
~x are bit strings of size M (like in PRIO and Poplar) and only one coordinate can be non-negative, the prover sends to
the verifier r =

∑M
j=1 rxj along with the Σ-proofs, where rxj is the randomness used to create commitments for the

coordinate xj ∈ {0, 1}. As ~x ∈ L, implies ~x ∈ {0, 1}M and ||~x||1 = 1, the OR proofs verify the first criterion and the
second criterion is easily verified by checking c||~x|| =

∏M
j=1 cxm is a a commitment to one i.e., check if g1hr = c.

D Deferred Security Proofs

Single Curator Simulator Proof.

Theorem D.1 Let Vfr∗ denote the corrupted verifier. There exists a PPT Simulator Sim(Vfr∗) such that for all y =
MBin(X,Q)

View [Π(Pv, Vfr)]
c≡ Sim(Vfr∗(y, ~rv, z, pp)

where z ∈ {0, 1}poly(κ) and ~rv ∈ {0, 1}poly(κ) represents auxiliary input and randomness available to all the cor-
rupted parties.

Proof 6 Denote the corrupted verifier as Vfr∗. Sim receives on its input tape the inputs for Vfr∗. The ideal oracle
functionalityMBin is defined as before. Let Sim denote shorthand for SimVfr∗ . We construct the simulator as follows:

1. Sim receives the public messages {ci}i∈[n].

2. Sim invokesMbin with the empty string λ and receives y as defined in equation (7).

3. Sim samples z R←− Rpp and sets c = Com(y, z).

4. Sim samples c′2, . . . , c
′
nb

such that c′j = Com(1, sj) where sj
R←− Rpp. It sets c′1 = g1a where a =

c×
(∏nb

j=2 ĉ
′
j

)−1

×
(∏n

i=1 ci

)−1

× g−1.
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5. Sim sends over {cj}j∈[nb] to A pretending to be the honest prover (Line 4 of Figure 2).

6. Sim pretends to be the prover and jointly invokes OMorra with A to sample nb unbiased public bits
(b1, . . . , bnb).

7. Sim sends y and z to A and outputs whatever A outputs.
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