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Abstract

Differential Privacy (DP) is often presented as a strong privacy-enhancing technology with broad
applicability and advocated as a de-facto standard for releasing aggregate statistics on sensitive data.
However, in many embodiments, DP introduces a new attack surface: a malicious entity tasked
with releasing statistics could manipulate the results and use the randomness of DP as a convenient
smokescreen to mask its nefariousness. Since revealing the random noise would obviate the purpose
of introducing it, the miscreant may have a perfect alibi. To close this loophole, we introduce
the idea of Interactive Proofs For Differential Privacy, which requires the publishing entity to
output a zero knowledge proof that convinces an efficient verifier that the output is both DP and
reliable. Such a definition might seem unachievable, as a verifier must validate that DP randomness
was generated faithfully without learning anything about the randomness itself. We resolve this
paradox by carefully mixing private and public randomness to compute verifiable DP counting
queries with theoretical guarantees and show that it is also practical for real-world deployment. We
also demonstrate that computational assumptions are necessary by showing a separation between
information-theoretic DP and computational DP under our definition of verifiability.

1 Motivation

Differential Privacy (DP) is often presented as a strong privacy-enhancing technology with broad applicability
and advocated as a de-facto standard for releasing aggregate statistics on sensitive data. It is most commonly
studied in the single curator model, where a single entity receives all the sensitive data and is entrusted to output
DP statistics. Variations that modify the trust and computational model include local privacy [War65], shuffle
privacy [BBGN19, CSU19], computational differential privacy [MPRV09], multi-party (MPC) differential privacy
[MMP+10] and client-server MPC-DP [CGB17]. Regardless of the computational and trust model, a consistent
theme across all existing work is to view DP simply as a privacy-preserving mechanism. In this paper, we flip the
script and ask the following question:

What if the entity responsible for releasing aggregate DP statistics seeks to abuse the protocol, distort the
output and use the randomness required by differential privacy as an alibi to hide its nefarious behaviour?

That is, a malicious entity may tamper with the computation in order to publish biased statistics and claim this
reflects the true outcome; any discrepancies may be dismissed as artefacts of random noise. Consider a counting
query protocol to determine the DP winner of a plurality election, where the users vote for 1 out of M candidates
(say, which topping people prefer on their pizza). A corrupted aggregator might not be interested in any particular
user’s vote but in biasing the aggregate output of the protocol instead. Thus, if that server has auxiliary information
about the preferences of a subset of users, they might tamper with the protocol to exclude those honest voter
inputs; or they might manipulate the published output to bias the results of the election (say, to pineapple) and
blame any discrepancies in the result on random noise introduced by DP. Given that differential privacy is used
to compute approximations over sensitive information, it is likely that the output is also used to make socially
important decisions and hence must be reliable. Note that in order to preserve the privacy of inputs, some loss
in the accuracy of the output is unavoidable. By definition, DP requires the output to be perturbed by private
randomness. This implies that the curator cannot just publish the randomness used to compute statistics as proof
that it behaved honestly, as that would defeat the purpose of introducing randomness in the first place. Outputting
approximate statistics already creates tensions between the publishing entity and the downstream consumer. In
2021, the State Of Alabama filed a lawsuit claiming that the use of DP on census data was illegal [Jus21], citing the
inaccuracies introduced by DP. Thus, verifying that any utility loss can be attributed solely to unavoidable DP
randomness is critical for the wider societal acceptance and adoption of DP.

∗Some of the results discussed in this extended abstract will appear at The ACM Conference on Computer and
Communications Security (CCS), 2023 under the title Interactive Proofs For Differentially Private Counting.
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To this end, we formally introduce the idea of Interactive Proofs For Differential Privacy (IPDP) in both the single
curator2 setting and the client-server multi-party3 setting [BDO14] in the presence of active adversaries4. Our
contributions are as follows:

1. We formally introduce definitions for Interactive Proofs For Differential Privacy in both the trusted curator
and client-server multiparty setting. Informally, the entity responsible for releasing DP statistics must also
output a zero knowledge proof to verify that the output distribution was constructed correctly and the
private randomness was generated faithfully. Such a proof reveals no additional information5 but ensures
that the curator cannot use DP randomness maliciously.

2. We show concrete instantiations of interactive proofs of DP by computing DP counting queries (histograms)
in the trusted curator and client-server multiparty settings. In the trusted curator setting, there is a single
aggregating server that sees client data in plaintext and is responsible for outputting a DP histogram
along with a proof that the DP noise was generated faithfully. In the client-server MPC setting, clients
secret-share the inputs and send them to K ≥ 2 servers, who then participate in an MPC protocol to output
DP histograms. The protocol itself is secure in that not even the participating servers are able to learn any
new information beyond the output nor are they able to tamper with the protocol.

3. We report experiments that show that our protocols with formal theoretical guarantees are also
practical. Additionally, we describe how our protocol Π, for verifiable DP counting, can be combined
with existing (non-verifiable) DP-MPC protocols, such as PRIO [CGB17] and Poplar [BBCG+21], to
enforce verifiability. The code for the experiments can be found at https://github.com/abiswas3/
Verifiable-Differential-Privacy.

4. We demonstrate that interactive proofs for information-theoretic DP is impossible. Specifically, if the
prover or verifier is computationally unbounded, either simulability6 (DP guarantee) or unconditional
soundness (the output distribution is not verifiable) fails to hold. This result provides a potential answer
to Open Problem 10.6 from [Vad17, Chapter 10], which asks “Is there a computational task solvable by a
single curator with computational differential privacy but is impossible to achieve with information-theoretic
differential privacy?”

2 Interactive Proofs For Differential Privacy (IPDP)

This section informally discusses the definitions for interactive proofs for DP. A formal description of all definitions
can be found in Appendix A. Although we discuss the single curator model here for simplicity, the definitions apply
to both the single curator and client-server MPC setting. In both settings, we will assume that the inputs come
from n ∈ N distinct clients. Let κ ∈ N denote the security parameter. Given a description of (possibly uncountable)
sets X and Y, our goal is to compute some function f : Xn → Y, which is computable efficiently by a PPT Turing
Machine over inputs from n distinct input sources (clients), in a differentially private manner. In the single curator
model, a single aggregating server receives client inputs X ∈ Xn in plaintext. It is responsible for constructing a
distribution M(X, f), where M is a public7 (ε, δ)-DP mechanism for computing f . The server never publishes the
distribution M(X, f) in the clear but instead publishes at most q(κ) samples from the distribution as the output of
M. We denote with y

$←− M(X, f) the output of draws from M(X, f). But of course, the curator might be corrupted
and could output samples from any distribution D arbitrarily far8 from M(X, f). In what follows, we use the terms
P (prover), server and curator interchangeably, and likewise use the terms analyst and V (verifier) to refer to the
same entity. Unless otherwise specified, it is safe to assume that the prover P and verifier V are Turing Machines
equipped with a private random and advice/auxiliary tape. In what follows, we use the terms interactive proofs and
verifiable DP protocols interchangeably.

Our aim is to define and construct a verifiable DP mechanism in which a prover convinces a verifier that the
output it received was sampled from M(X, f) without revealing any information about the distribution itself.

2When we say single curator, we imply that there is a single server that can view client inputs in plaintext. However, this
server could still be corrupted, so it must prove that the final released output was computed as prescribed by the DP protocol.
Of course, we cannot protect client privacy in the single server setting. The focus is on ensuring the output is reliable

3Here, the clients first secret share their inputs before sending one share to each of the K ≥ 2 curators. Thus as long as a
single curator follows the protocol honestly, the client inputs are information theoretically secure.

4By active adversaries, we mean participants that may deviate from protocol specifications arbitrarily. In the MPC setting,
we can guarantee both privacy of client inputs and that the output is reliable. In the single curator setting, active adversaries
are equivalent to malicious verifier zero knowledge.

5Apart from what can be inferred by samples from the output DP distribution.
6See definition for Interactive Proofs For DP in Section A.3 for a definition of simulability.
7All involved parties know a description of M.
8Throughout this document, we measure distances between distributions using total variation distance, denoted as dTV(·, ·).
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A verifiable DP mechanism for M consists of a PPT algorithm Setup and an interactive proof system Π between
two “next-message-computing-turing machines” P and V. A next-message computing-Turing machine computes,
sends, and receives messages from the other party over a sequence of alternating rounds. Any message, for example,
V’s message mi at round i is determined by its input, messages it has received so far from the other party and its
internal random tape rV ∈ {0, 1}∗.

pp $←− Setup(1κ) describes the PPT algorithm that receives a unary representation of the security parameter κ as
input and generates public parameters pp randomly, that is broadcasted to all parties.

Π describes an interactive proof system for differential privacy between a prover (P) and a verifier (V). P receives
as inputs (i) public parameters pp, (ii) client inputs X ∈ Xn and (iii) random coins rP ∈ {0, 1}∗ (on its random
tape). The verifier receives inputs (i) public parameters pp, (ii) auxiliary input z ∈ {0, 1}poly(κ) and (iii) random
coins rV ∈ {0, 1}∗. Our results still hold if the verifier also receives a neighbouring dataset X ′ (differs from X by at
one location only) as auxiliary input, due to the DP definition of M. The prover and verifier exchange messages for
tΠ = ⌈2poly(κ)⌉ rounds. As a convention, we denote with even indices rounds in which the verifier sends messages
and denote with odd indices rounds when the prover sends messages (the last message is the verifier’s decision).

In at least one round j ∈ {1, 3, . . . , 2tΠ − 1}, the prover sends to the verifier V a message yj with a special tag called
output. Let y⃗ denote all the messages sent by the prover tagged as output. At the end of message exchanging rounds,
the verifier uses a pre-specified deterministic polynomial time algorithm A to compute y = A(y⃗) before announcing
its verdict. As for all j ∈ {1, 3, . . . , 2tΠ− 1}, yj is computed as a function of Pj ’s internal randomness, y is a random
sample from some distribution D described by the prover and verifiers messages. We call this distribution D, from
which the verifier samples y

$←− D, the induced output distribution of Π(P,V). The verifiers’ verdict (final output) is
either 0 or 1, with 1 indicating that the verifier accepts the provers’ claim that the induced distribution D = M(X, f)
and y is a sample from M(X, f), and 0 indicating otherwise. The proof system Π is an interactive proof system for
DP if it satisfies the following conditions (stated informally, see Appendix A for formal definitions):

1. Completeness: If the prover and the verifier both behave honestly as prescribed by Π and the induced
distribution D = M(X, f), the verifier rejects with negligible probability.

2. Soundness: Let α(κ) be a noticeable function9. If the prover is dishonest, and its messages result in a
final induced distribution D, such that dTV(D, M(X, f)) ≥ α(κ), then the verifier accepts with negligible
probability. This implies that the curator responsible for outputting DP statistics cannot tamper with the
protocol noticeably without getting caught by the verifier. Thus a malicious curator can no longer use DP
randomness as a smokescreen to hide its nefariousness.

3. Zero Knowledge: So far, we have not ruled out protocols where the prover sends the verifier its private
randomness along with y. However, this would defeat the purpose of DP. Let X ′ = X \ {x} denote any
neighbouring dataset of X. We need to prove that a verifier that has access to X ′ still does not learn
anything more about x than what it would learn from a sample from M(X, f). To do this, we borrow from
the definition of zero knowledge and construct a PPT algorithm called the simulator that receives the same
inputs as a corrupted verifier V̂, and has oracle access10 to V̂ and sample access11 to M(X, f). Then we show
the view of the simulator is indistinguishable from the view of a corrupted verifier V̂ that tries to deviate
from protocol. The view of a party is computed as a function of all the messages it receives, its internal
randomness and the joint output of the protocol.

Remark 1 An interesting point to note is that here verifier plays a dual role. An honest verifier ensures that the
output is faithfully generated and thus plays an active role in noise generation (as the final output y is a function of
its and the provers’ messages) without ever knowing the values on the provers’ random tape. On the other hand, a
dishonest verifier tries to tamper with the protocol to breach privacy (by trying to learn more than just the output).
In non-verifiable DP, the analyst (verifier) only has sample access to the induced distribution. They have no agency
over how this distribution is constructed. Thus the verifier participating in verifiable DP has a greater attack surface
than a classical adversary in traditional non-verifiable DP. In the full version of this work [BC22], we elaborate on
this when trying to establish separations between statistical DP and computational DP.
Remark 2 When extending the above definitions to the MPC setting, just as in standard MPC, in the presence of
a dishonest majority of corrupted participants, we do not treat early exiting by corrupted parties as a breach of
security. This is easily detected by the honest parties, and the output is ignored.

9A noticeable function is a function which is not negligible in the security parameter, where a negligible is defined in
Definition 3 in Appendix A.

10By oracle access we mean black box access as defined [Gol07, Chapter 4].
11We say an algorithm has sample access to a distribution D if it can query an oracle OD to retrieve samples y

$←− D.
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3 Main Results

In this section, we state our theorems informally and briefly discuss our techniques. First, we describe efficient
constructions for interactive proof systems to verifiably compute Computationally Differentially Private (CDP,
formalized in Definition 7) counting queries using the Binomial Mechanism (Lemma 1). In these constructions, n
clients publicly commit to their inputs before sending them to the curator. The honest verifier uses these commitments
to ensure the curator computes the query f correctly. The hiding property of commitments ensures that the verifier
learns nothing about the inputs from these public commitments. To ensure the prover samples provable but private
unbiased randomness for the binomial mechanism, we describe a novel algorithm using homomorphic commitments
by which the verifier can audit the prover’s randomness without seeing the prover’s random coins. This allows
the prover to commit to using the correct randomness required for DP without actually revealing the randomness.
Once we have established commitments for client inputs and prover randomness, we use cryptographic verification
techniques from [BSCG+13, BCV16] to verify the final computation. The essence of the protocol is to use interaction
between the prover and the verifier to create a new set of committed binary coins that are truly random (provided
that the prover and verifier do not collude). The sum of the new coin values, interpreted as bits, provides the right
Binomial noise distribution that yields differential privacy. The homomorphic nature of the commitments ensures
that the verifier can construct a commitment to the sum of the inputs and all the coins, which is the output that
the prover can decommit to. As our results depend heavily on homomorphic commitment schemes (hence one-way
functions), we restrict both the prover and the verifier to be PPT and thus can only guarantee results for CDP.

Theorem 1 (Informal) There exists an efficient construction for an interactive proof of CDP for computing
counting queries using the binomial mechanism.

The techniques to output counting queries verifiably can be further generalised for computing CDP mechanisms
represented by any polynomial-sized arithmetic circuit. Addition gates are handled naturally by homomorphism.
For multiplication gates, we use Beaver’s triples and interaction [DKL+13] to verify multiplications of committed
inputs and randomness.

Theorem 2 (Informal) There exists an efficient construction for an interactive proof of CDP for computing
any mechanism described by a polynomial-sized arithmetic or boolean circuit.

Remark 3 In all our constructions, the verifier is always a public coin protocol and contributes no private input to
the proof system.

Next, we show that, without assumptions such as a random oracle (ROM) or common random string (CRS), it
is impossible to have non-interactive proofs (Merlin-Arthur proofs) for DP. This result follows immediately from
folklore results about verifiable coin flipping. If the prover’s message is not a function of the verifier’s messages, then
the verifier has no control over what the prover sends. Given that the verifier can receive only a single draw from the
output distribution, it cannot construct confidence intervals about the prover’s distribution either. Thus interaction
is necessary for proof of DP, and the verifier and the prover must construct randomness for DP jointly. Our results
can be interpreted as the DP analogue of the honest verifier to malicious verifier transformation for statistical zero
knowledge [Vad99], where the prover and verifier must jointly compute the random selection protocol [DGW94].

Theorem 3 (Informal) Non-interactive proofs of DP are impossible in the plain model.

The definition of information-theoretic DP states that even a computationally unbounded adversary that has access
to a neighbouring input dataset X ′ cannot distinguish samples drawn from M(X, f) and M(X ′, f) where M is an
(ε, δ)-DP mechanism for computing f . However, we show that if the prover tried to convince such an adversary that
they used randomness correctly, it would violate differential privacy in the process (or the prover would be able
to lie about their randomness). Our proofs use the seminal results of [HO14], which state that fair coin flipping
implies the existence of one-way functions and otherwise incurs noticeable bias. Interactive proofs for the binomial
mechanism in the presence of a computationally unbounded verifier and prover would not only allow us to flip fair
coins but also to do so privately (which is a strictly harder task).

Theorem 4 (Informal) If either the prover or the verifier is computationally unbounded, then interactive
proofs for Information Theoretic DP is impossible.

Finally, we provide performance benchmarks that show that constructions given in Theorems 1 and Theorem 2 are
efficient and can be deployed in the real world for medium-sized datasets (about n = 106) clients: each individual
check takes at most a couple of hundred milliseconds, while the entire interactive proof protocol can be performed
in a matter of minutes, comparable to the running time of non-verified systems for working with private data.
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A Formal Definitions

A.1 Notation

For any n ∈ N, we write [n] to denote the set {1, . . . , n} and [a, b] to denote closed interval of of real numbers
between a < b. All logarithms are base two unless otherwise specified. We use the convention that lowercase letters
are the logarithm (base 2) of the corresponding capital letter (e.g., for any n ∈ N, N = 2n). We use the abbreviation
PPT to denote probabilistic polynomial time. For any set U , we write x

$←− U to denote that x was uniformly
sampled from the set U . For n ∈ N, we denote by ∆(Ωn) the set of all probability distributions over the set Ωn. For
any D ∈ ∆(Ωn) we write x

$←− D to denote x was sampled according to D. We identify a distribution D with its
probability mass function: for every x ∈ Ωn, D(x) denotes the probability Pr

X
$←−D

[X = x] and for every set S ⊆ Ωn,
D(S) denotes the Pr

X
$←−D

[X ∈ S]. We use SD to denote the support of the distribution D.

We denote vectors with an arrow on top as in x⃗ ∈ ZM
q , where M represents the number of coordinates in the vector

and Zq represents a prime order finite field of integers of size q. We write a⃗+ b⃗ to mean coordinate-wise vector
addition a+ b mod q, where a and b are arbitrary coordinates of a⃗ and b⃗. Similarly, when we write a⃗× b⃗, we refer
to the coordinate-wise Hadamard product between the two vectors.

A.2 Preliminaries

Definition 1 (Distance Between Distributions) Let D,D′ be probability distributions (possibly joint distributions)
over domain Ωn. We define the total variation distance between two distributions as

dTV(D,D′) =
1

2
||D − D′||1 = max

S⊆Ωn

|D(S)−D′(S)| . (1)

Definition 2 (Sample Access) We say an algorithm A has sample access to a distribution D if it has access to an
oracle that it can invoke to generate independent samples from D. We remark that the oracle is memoryless and
sequential invocations of the oracle are equivalent to drawing independent samples from D. We denote the output
of an algorithm A with input x (explicit) and sample access to D by AD(x).
Definition 3 (Negligible Functions And Noticeable Functions) A function µ : N→ R is negligible iff ∀c ∈ N, there
∃nc ∈ N, such that ∀n > nc, µ(n) ≤ n−c. Any function not negligible in n is called noticeable in n.

Definition 4 (Statistical Distinguishablity) Fix security parameter n ∈ N. We say two probability ensembles
{Xn}n∈N and {Yn}n∈N are statistically indistinguishable if there exists a negligible function µ such that, for all
sufficiently large n’s it holds that

dTV(Xn, Yn) ≤ µ(n)

We denote two statistically indistinguishable distributions as {Xn}n∈N
s≡ {Yn}n∈N. If we have µ(n) = 0, we say the

two distributions are perfectly indistinguishable and we denote it as {Xn}n∈N ≡ {Yn}n∈N.
Definition 5 (Computational Indistinguishability) Fix security parameter n ∈ N. Let {Xn}n∈N and {Yn}n∈N be
probability distributions over {0, 1}poly(n). If for all non-uniform PPT Turing machines D (“distinguishers”), there
exists a negligible function µ, such that for every n ∈ N∣∣∣Pr[D(Xn) = 1]− Pr[D(Yn) = 1]

∣∣∣ ≤ µ(n)

We say that {Xn}n∈N and {Yn}n∈N are computationally indistinguishable and denote it as {Xn}n∈N
c≡ {Yn}n∈N.

Definition 6 (Information Theoretic Pure DP) Let κ ∈ N be the security parameter. Fix n ∈ N, ε ≥ 0 and δ(κ) as a
negligible function. Let Q = {f : Xn → Y} denote a family of functions whose output we wish to make differentially
private. Further assume that the L1 norm is well defined on X and Y . Define a mechanism M : Xn×Q → ∆(Y) that
takes as input n client inputs X = (x1, . . . , xn) and a function f ∈ Q and constructs a distribution M(X, f) ∈ ∆(Y).
It then outputs an oracle OM(X,f) that provides sample access to M(X, f). M satisfies ε, δ differential privacy if for
every two neighboring datasets X ∼ X ′ such that ||X −X ′||1 = 1 and for every query f ∈ Q we have for all T ⊆ Y

Pr
Y

$←−M(X,f)

[Y ∈ T ] ≤ eϵ Pr
Y

$←−M(X′,f)

[Y ∈ T ] + δ(κ) (2)

Definition 7 (Computational DP [MPRV09]) Fix κ ∈ N and n ∈ N. Let ε ≥ 0 and δ(κ) ≤ κ−ω(1) be a negligible
function, and let M = {Mκ : Xn

κ → Yκ}κ∈N be a family of randomised algorithms, where Xκ and Yκ can be represented
by poly(κ)-bit strings. We say that M is computationally ε-differentially private if for every non-uniform PPT Turing
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machine (“distinguishers”) Dz with auxiliary input z, for every query f ∈ Q, and for every neighbouring dataset
X ∼ X ′, for all T ⊆ Yκ we have

Pr
Y

$←−M(X,f)

[
DX′(Y ∈ T ) = 1

]
≤ eϵ · Pr

Y
$←−M(X′,f)

[
DX′(Y ∈ T ) = 1

]
+ δ(κ) (3)

In the above definition, the distinguishing algorithm knows X ′ i.e., all but one input in X, and it still cannot
distinguish between samples between M(X, f) and M(X ′, f).
Lemma 1 (Binomial Mechanism) Let X = (x1, . . . , xn) ∈ Zn

q and define counting query Q(X) =
∑n

i=1 xi. Fix
η > 30, 0 < δ ≤ o( 1η ) and let Z ∼ Binomial(η, 1

2 ). Then Z + Q(X) is an (ϵ, δ)-differentially private with

ϵ = 10
√

1
η ln 2

δ .

Cryptographic Background
Definition 8 (Discrete Log Assumption) For all PPT adversaries A, there exists a negligible function µ such that

Pr

x = x′ :

(Gq, g)← Setup(1κ)
x

R←− Zq, h = gx

x′ ← A(pp, h)

 ≤ µ(κ)

Definition 9 (Commitments) Let κ ∈ N be the security parameter. A non-interactive commitment scheme consists
of a pair of probabilistic polynomial time algorithms (Setup, Com). The setup algorithm pp← Setup(1κ) generates
public parameters pp. Given a message space Mpp and randomness space Rpp, the commitment algorithm Compp
defines a function Mpp × Rpp → Cpp that maps a message to the commitment space Cpp using the random space. For a
message x ∈ Mpp, the algorithm samples rx

R←− Rpp and computes cx = Compp(x, rx). When the context is clear, we
will drop the subscript and write Compp as Com.
Definition 10 (Homomorphic Commitments) A homomorphic commitment scheme is a non-interactive commitment
scheme such that Mpp and Rpp are fields (with (+,×)) and Cpp is an abelian groups with the ⊗ operator on which the
discrete log problem (Definition 8) is hard, so that for all x1, x2 ∈ Mpp and r1, r2 ∈ Rpp we have

Com(x1, r1)⊗ Com(x2, r2) = Com(x1 + x2, r1 + r2) (4)

Throughout this paper, when we use a commitment scheme, we mean a non-interactive homomorphic commitment
scheme with the following properties:

1. Hiding: A commitment cx reveals no information about x and rx to a computationally bounded adversary.
Definition 11 (Hiding Commitments) Let κ be the security parameter. A commitment scheme is said
to be hiding for all PPT adversaries A the following quantity is negligible. The commitment is perfectly
hiding if µ(κ) = 0.

Pr

b = b′ :

pp← Setup(1κ)
b

R←− {0, 1}, rxb

R←− Rpp
(x0, x1) ∈M2

pp ← A(pp)
c = Com(xb, rxb

), b′ = A(pp, c)

 ≤ µ(κ)

2. Binding: Given a commitment cx to x using rx, there is no efficient algorithm that can find x′ and rx′

such that Com(x′, rx′) = cx = Com(x, rx)

Definition 12 (Binding Commitments) Let κ be the security parameter. A commitment scheme is said to
be binding if, for all PPT adversaries A, there exists a negligible function µ such that

Pr

[
(cx0 = cx1) ∧ (x0 ̸= x1) :

pp← Setup(1κ)
x0, rx0

, x1, rx1
← A(pp)

]
≤ µ(κ)

The commitment is perfectly binding if µ(κ) = 0.
3. Zero Knowledge OR Opening: Given cx, the commiting party is able to prove to a polynomial time

verifier that cx is a commitment to either 1 or 0 without revealing exactly which one it is. We denote such
a proof as ΠOR and say it securely computes the oracle OOR, which computes if cx ∈ LBit

LBit = {cx : x ∈ {0, 1} ∧ cx = Com(x, rx)} (5)
where for some rx ∈ Zq.

In all our experiments and security proofs, we use Pedersen Commitments (PC), though one could replace PC with
[WYKW21, DIO20, BMRS21], and still satisfy all the above properties.
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A.3 Interactive Proofs For Differential Privacy

Definition 13 (Interactive Proofs For DP) Fix κ ∈ N as the security parameter. Let M be a DP mechanism for
computing f : Xn → Y using inputs X = (x1, . . . , xn) received from n distinct clients (input sources). Let K ≥ 1
and (X1, . . . , XK) denote a partitioning/secret sharing of X such that there exists a public deterministic PPT
reconstruction algorithm A, such that X = A(X1, . . . , XK).

An interactive proof for DP (IPDP) for M consists of a PPT algorithm Setup and a multi-prover (single if K = 1)
interactive proof system Π. pp $←− Setup(1κ) describes the PPT algorithm that receives a unary representation of
the security parameter as input and generates public parameters pp. Π denotes a multi prover interactive proof
system between K ≥ 1 provers P⃗ = (P1, . . . ,PK) and a single verifier V where for each j ∈ [K], (Xj , r⃗Pj

, pp) denotes
the inputs for Pj and (z⃗, r⃗V, pp) denote the verifier’s input. Here where r⃗Pj

and r⃗V denotes Pj ’s and the verifier’s
internal randomness respectively and z⃗ denotes the verifier’s auxiliary input. The proof system Π is an interactive
proof system for mechanism M if there exist negligible functions δc and δs in κ such that the following hold:

1. Completeness: Let Π(P⃗,V) denotes the induced output distribution from which the verifier samples the
final output y

$←− Π(P⃗,V) if the verifier and all provers are honest. If Π(P⃗,V) = M(X, f)

Pr

out(V, P⃗) = 0 :

pp $←− Setup(1κ)
Pj

Input←−−− (Xk, r⃗Pj
, pp)

V
Input←−−− (z⃗, r⃗V, pp)

y
$←− Π(P⃗,V)

 ≤ δc.

2. Soundness: Let α denote a noticeable function in κ. For any subset, I ⊆ [K], let A(I, P⃗) denote a subset
provers indexed by I, that are corrupted by an adversary A, and P̃ denote the set of honest provers not
indexed by I. Let D = Π(P̃ ∪ A(I, P⃗),V) denote the induced output distribution from which the verifier
samples the final output y

$←− D. Then, if dTV(D, M(X, f)) > α(κ)

Pr

out(V, P̃ ∪ A(I, P⃗)) = 1 :

pp $←− Setup(1κ)
Pj

Input←−−− (Xk, r⃗Pj
, pp)

V
Input←−−− (z⃗, r⃗V, pp)

y
$←− D

 ≤ δs.

3. Zero Knowledge: Let A denote an adversary that knows all but one of the inputs of X (denoted as X ′).
Let V̂ denote an arbitrary verifier strategy that is corrupted along with any proper subset I ⊂ [K] of provers
by A. Let A(I, P⃗) denote the collection of corrupted provers, indexed by I, and P̃ denote the set of honest
provers. Let view

[
Π
(
P̃ ∪ A(I, P⃗)), V̂

)]
be the joint distribution12 of messages received by A and induced

output distribution D during the execution of Π in the presence of corrupted parties. There exists a PPT
algorithm called Sim(V̂,P⃗∗,D) with black box access to V̂ and P⃗∗ (via A) and sample access to D, such that
if D = M(X,Q)

viewA

[
Π
(
P̃ ∪ A(I, P⃗), V̂

)]
s≡ Sim(A,D)(r⃗V, z⃗)

Definition 14 (View of an interactive protocol) Let Π(P⃗,V) be an interactive proof system for differential privacy.
Let A denote an adversary that controls an arbitrary verifier strategy V̂ and up to K − 1 provers. The view of the
verifier A defined as

viewA[Π(P,V)] := (m1,m2, . . . ,mtΠ ; rA; y),

where m1, . . .mtΠ are the messages A receives from the honest prover’s P, rA denotes A’s local coins, which it uses
to set V̂ and the dishonest prover’s random tape. z denotes A’s auxiliary input and y denotes a samples drawn from
the induced output distribution D.

12As the output of M is random, the joint distribution of the view of the adversary and their output must be indistinguishable
from the simulated transcript (and not just the view of the adversary). See [Lin17] for more details.
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