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Abstract

The task of finding Hierarchical Heavy Hitters (HHH) was introduced by Cormode et al. [2003] as
a generalisation of the heavy hitter problem. While finding HHH in data streams has been studied
extensively, the question of releasing HHH when the underlying data is private remains unexplored. In
this paper, we formalise and study the notion of differentially private HHH, in both the streaming and
non-streaming setting. In the non-streaming setting, we show the surprising result that that the relative
error in estimating the count for any prefix is independent of the height of the hierarchy and the number
of heavy hitters in the stream. Additionally, our algorithms also improve the error guarantees of Ghazi
et al. [2022] for the problem of counting over trees. Meanwhile, in the streaming setting, the main issue is
that although the exact version of HHH has low global sensitivity (as counting queries are 1-sensitive),
the approximation functions due to streaming have high global sensitivity, linear in the available space.
Despite this obstacle, we show that the absolute error for estimating frequencies in the steaming setting
is independent of the available space.

1 Introduction

The task of finding Heavy Hitters (HH), a.k.a. frequent items, in a dataset is one of the most well-studied
problems in data science. The task has been studied under the streaming model of computation [Cormode et al.,
2008, 2003], distributed computation [Cheu, 2021], and even through the lens of secure computation [Corrigan-
Gibbs and Boneh, 2017]. In this work, we adopt the lens of differential privacy (DP) to study the Hierarchical
Heavy Hitters (HHH) problem, introduced by Cormode et al. [2003] as a generalisation of the heavy hitter
problem. The problem of DP-HHH is motivated by the observation that data is often both hierarchical and
confidential. Consider checking for evidence of discrimination in mortgage lending decisions, as discussed in
Lee and Floridi [2021]. An analyst is given a database of historical lending decisions and asked to ascertain
if a particular demographic has been treated unfairly. The personal information about loan applicants
is inherently hierarchical. For example, a person’s residential address can be divided into street address,
postcode, village, city, country, and so on. As historical data is often difficult to obtain, any given dataset
might not include enough applicants from every fine-grained portion of the hierarchy. However, if we analysed
the data at a coarser granularity, we might find a statistically significant number of participants to draw
reliable conclusions. Naturally, whether hierarchical or not, demographic information is considered highly
confidential. It is well known that even releasing summary statistics about a population can leak information
about individuals in the dataset. Differential privacy has become the de facto standard for defending against
such leakage. As a result, given a dataset, we wish to output its hierarchical heavy hitters privately.

Note that finding hierarchical heavy hitters is not the same as finding heavy hitters at each level in a
hierarchy (referred to as counting over trees in Ghazi et al. [2022]). Hierarchical heavy hitters, which we
formally define later (Definition 8) is a generalisation of the heavy hitters problem. At a high level, apart
from telling us if an element is heavy, it also tells us how it is heavy. HHH allows us to distinguish between
an element that is heavy because it has a heavy child (or a few heavy children) and an element that is heavy
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Figure 1: A dataset of 100 elements over a hierarchy with residual counts (left) and unconditional counts (right).

because it has many light children that are cumulatively heavy. Furthermore, if we are given the set of (exact)
hierarchical heavy hitters of a dataset, we can derive the heavy hitters at each level of the hierarchy. The
converse, however, is not true. Figure 1 illustrates this difference with a toy example. The figure shows a
dataset of 100 elements drawn from a hierarchy of height 3. Each node in the tree corresponds to an element
in the hierarchical universe. The leaf nodes are fully specified elements, while the root node describes the fully
generalised element of the hierarchy. The edges between nodes represent a partial order between elements of
the hierarchy (see Section 2 for formal details). Given a public threshold of 𝜏 = 10, a node is heavy if its count
exceeds 𝜏. The counts listed next to the nodes on the right tree are the unconditional counts (Definition 4)
of the node in the dataset. The nodes marked in blue on the right tree are the heavy hitters at each level of
the hierarchy. The nodes marked in blue on the left tree are the hierarchical heavy hitters of the dataset.
The counts listed next to the nodes on the left tree are called residual counts (Definition 5). The residual
count of a node is the count of a node ignoring its heavy children, whereas the unconditional count of a node
is just the sum of the counts of its children. Observe that the root node is not a hierarchical heavy hitter,
although its absolute count is greater than the threshold. The root node is heavy only because it has heavy
children, not because it is an aggregation of several light children. If we were to just see the output of heavy
hitters, we would lose this information.

1.1 Related work

Streaming HHH. The hierarchical heavy hitter problem was first defined and studied in the streaming
setting, as the offline problem is straightforward. Initial work defined the problem for streams of data
drawn from a single hierarchy, and showed upper bounds on the problem, by building streaming heavy
hitter summaries of data at each level [Cormode et al., 2003, Lin and Liu, 2007, Mitzenmacher et al., 2012].
Subsequent work extended the problem to data with multiple hierarchical attributes [Cormode et al., 2004,
2008], and showing lower bounds on the space required to solve the problem [Hershberger et al., 2005,
Mitzenmacher et al., 2012]. In the streaming model, data arrives incrementally, and we assume that the
algorithm does not have enough space to store the entire dataset, or enough counters for each element of the
data universe. Mitzenmacher et al. [2012] show that approximating HHH via the Space Saving algorithm (SS)
for heavy hitters [Metwally et al., 2006] is optimal in terms of error and space complexity in the streaming
setting.
Private counting. Despite its relevance to data analytics, the HHH problem has not been previously studied
under differential privacy. However, there has been much research on simpler non-hierarchical heavy hitter
estimation under privacy, in both the non-streaming [Balcer and Vadhan, 2017, Bassily et al., 2017, Cormode
et al., 2012, Korolova et al., 2009, Ghosh et al., 2009], and streaming models [Lebeda and Tetek, 2023, Chan
et al., 2012]. In this work, we show that despite this extensive body of work in the non-hierarchical setting,
we need new algorithms to privately estimate HHH efficiently in theory and practice. The most closely related
work to ours is concerned with outputting “unconditional counts” in a hierarchy, due to Ghazi et al. [Ghazi
et al., 2022]. As any fully specified element (“leaf”) affects the counts for nodes at each level of the hierarchy,
we must account for it every time we release a count for a node that is an ancestor of said leaf. Hence, the DP
error scales linearly with the height ℎ of the hierarchy when using basic composition, or

√
ℎ under advanced

composition [Dwork et al., 2014]. Edmonds et al. [2020] provide lower bounds showing that such a polynomial
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dependence on the hierarchy height is unavoidable if we want to estimate just the unconditional counts for
every element in the hierarchy1 with pure or approximate differential privacy (see Appendix 4).

Ghazi et al. [2022] circumvent this dependence on the height of the hierarchy by relaxing the problem
to consider relative error in estimating node counts, where the estimation gap for a node scales with the
absolute count of the node2. Their algorithmic guarantees replace the linear dependence on the height of
the hierarchy with a linear dependence of the maximum number of hierarchical heavy hitters in a dataset3.
Although this is an asymptotic improvement, the number of heavy hitters is much larger than the hierarchy
height for any practical scenario we can envisage. Hence the real-world performance will be much worse than
the naive baseline of estimating the counts at each level and paying for ℎ levels of composition. Concretely,
most real-world datasets are associated with shallow and wide hierarchies. Consider a dataset of bit strings
of size 𝑛 = 106, and a threshold of 2500, so there are up to 400 hierarchical heavy hitters. For this algorithm
to improve on the simple baseline, the hierarchy would need to have more than 400 levels, implying over 2400

elements.

1.2 Our results

Non-Streaming Setting: In this work, we show that the relative error for any node when estimating
private hierarchical heavy hitters scales by a much smaller constant that is independent of both the height
of the hierarchy and the number of hierarchical heavy hitters in the tree. Our algorithm is simpler than
that of Ghazi et al. [2022, Algorithm 1], and it can be used to solve the more general problem with better
error guarantees than prior attempts would imply. Our algorithm is optimal in the sense that we match the
constants in optimal algorithms for DP heavy hitters in the non-hierarchical setting [Balcer and Vadhan,
2017], and thus it incurs the lowest error one can hope for in the non-streaming setting. At a high level,
an intuitive explanation is that by targeting relative error instead of absolute error, elements higher up in
the hierarchy with larger frequencies can tolerate more DP noise. This structure proves to be critical for
circumventing composition bounds, by allowing us to re-use information about lower regions of the hierarchy,
and apply them to higher regions of the hierarchy. Bounding the absolute error for every node requires us
to treat each node independently, therefore destroying the structure we leverage to propose more accurate
algorithms.
Streaming Setting: In the streaming setting, along with DP error and composition error, we also need to
account for the approximation error due to space constraints. The main issue with streaming algorithms is
that although the exact version of the function (exact hierarchical heavy hitters) has low global sensitivity (as
counting queries are 1-sensitive), the approximation function can have high global sensitivity. For instance,
the Space Saving (SS) algorithm described by Mitzenmacher et al. [2012] is optimal in the non-private
setting, but Chan et al. [2012] show that the global sensitivity of the approximation function induced by
SS scales linearly with the number of counters per sketch (denoted with 𝜅 in this document). This would
imply an error that scales linearly with 𝜅. Lebeda and Tetek [2023] improve on this by providing a DP
mechanism for non-hierarchical heavy hitters, where the estimation error of the protocol does not rely on
global sensitivity. Inspired by [Lebeda and Tetek, 2023], we design algorithms for hierarchical heavy hitters
with DP noise whose variance is independent of 𝜅. The intuition behind our algorithm is that although the
approximation algorithm we use has high sensitivity, the counters in a sketch are highly correlated, with few
degrees of freedom. This structure (correlated counters) can be used to bypass composition bounds typically
enforced due to high global sensitivity of the function. This observation is closely related to why the seminal
Sparse Vector Technique algorithm (SVT) by Dwork et al. [2009] also circumvents composition bounds.
Although the two appear unrelated at first glance, we show that releasing private counts for our sketching
algorithm and SVT algorithm are essentially equivalent and use the same underlying theoretical concepts
to bypass composition. More broadly, the message of this work is that “where we have structure (sparsity,
monotonicity, correlation, etc.), we can leverage this structure to circumvent basic or advanced composition

1This is a strictly simpler problem than HHH, which involves estimating conditional counts. Therefore these lower bounds
immediately apply to HHH as well.

2In other words, nodes with large unconditional frequencies are allowed to tolerate more estimation error than nodes with
smaller unconditional frequencies.

3Algorithm 1 of their paper uses the constant 𝑐, independent of the height of the hierarchy, as an upper bound on the
maximum number of hierarchical heavy hitters.
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bounds”. Hierarchies offer structure in that the frequency of elements higher up in the hierarchy is computed
using frequencies of elements lower down. In streams, we show that despite high global sensitivity, we can
leverage correlation between counters in a sketch to circumvent composition bounds. We refer the reader to
Appendix A for further discussion on the role of structure in circumventing composition. To summarize:

1. In Section 3, we propose the first known private algorithm for the task of hierarchical heavy hitter
estimation. In the non-streaming setting, the relative error of our algorithm is independent of the height
of the hierarchy and the number of hierarchical heavy hitters in the dataset. Our constants match the
best known constants for private heavy hitter estimation in the non-hierarchical setting. Thus, our
algorithm incurs the smallest error one can hope for.

2. In the non-streaming setting, our algorithm can also be used to solve the problem of counting over trees
posed by Ghazi et al. [2022] (described by the figure on the right in Figure 1), with better relative error
guarantees.

3. In the streaming setting (Section 5), we show that the DP error of our HHH estimation algorithm is
independent of the space bound. However, in this setting, the DP error still depends on the height of
the hierarchy (which we show is likely unavoidable). Therefore, there is a gap in relative estimation
error between the streaming setting and the non-streaming setting under privacy. Despite this gap, for
all practical situations, removing the dependence on space is far more critical than the dependence on
the height of the hierarchy (as the number of counters is often orders of magnitude larger than the
height of the hierarchy).

The rest of the paper is organised as follows. In Section 2, we formally introduce the problem of hierarchical
heavy hitter estimation and review preliminary results from differential privacy. In Section 3 we describe our
solution in the non-streaming setting with unlimited space. In Section 5, we describe our algorithm in the
streaming setting.

2 Prelims And Problem Statement

General Notation. We describe sets with calligraphic font H . For a probability distribution 𝐷, we denote
with 𝑥 ←$ 𝐷 the event of sampling 𝑥 according to 𝐷. We highlight random variables and samples to distinguish
them from constants, as shown above. We write [𝑛] to denote the set {1, . . . , 𝑛}. For any event 𝐸 , we denote
with 𝐸 , the complement of the event. Next, we first review the necessary tools from differential privacy and
its basic properties, and then formalise the idea of a hierarchical domain.
Differential Privacy Definitions

Definition 2.1: Neighbouring Datasets

Let 𝑋 and 𝑋 ′ be a multi sets of elements picked from some (possibly hierarchical) domain H . 𝑋 and 𝑋 ′

are said to be neighbouring, (denoted as 𝑋 ∼ 𝑋 ′), if they differ by one element only, i.e., 𝑋 ′ = 𝑋 ∪ {𝑥′},
or vice-versa.

Definition 2.2: Differential Privacy (DP)

Fix some function 𝑓 that maps a set of elements from a hierarchical domain H to some range Y.
Fix 𝑛 ∈ N. Let 𝑋 ∈ H𝑛 and 𝑋 ′ ∈ H𝑛+1 denote any pair of neighbouring datasets. For 𝜀 > 0 and
𝛿 = negl(𝑛), where negl(·) is a negligible function in 𝑛, we say a random algorithm M computes 𝑓 with
(𝜀, 𝛿)-differential privacy if and only if and for all A ⊆ Y,

Pr[M(𝑋, 𝑓 ) ∈ A] ≤ exp (𝜀) Pr[M(𝑋 ′, 𝑓 ) ∈ A] + 𝛿

The special case of (𝜀, 𝛿)-DP with 𝛿 = 0 is referred to as pure DP, whereas 𝛿 > 0 is known as approximate
DP. A standard approach to obtain DP is to add noise proportional to the global sensitivity of the function
being evaluated.

4



Definition 2.3: Global Sensitivity

Given any function 𝑓 that maps a set of elements from a hierarchical domain H to R, we define the
global sensitivity Δ𝐺 ( 𝑓 ) of 𝑓 as Δ𝐺 ( 𝑓 ) := max(𝑋, 𝑋′ ) ∥ 𝑓 (𝑋) − 𝑓 (𝑋 ′)∥1, where the maximum is taken
over any pair of neighbouring datasets 𝑋, 𝑋 ′.

It is well known that the global sensitivity of a counting query, such as the queries defined in Definitions
4 and 5 is 1. The following facts about differential privacy can be found in any introductory textbook on
differential privacy [Dwork et al., 2014].

Fact 1 (Laplace Histograms). Let 𝑓 be a function that maps elements from some domain to a subset of R𝑑,
that has global sensitivity Δ𝐺 . Then the Laplace mechanism M defined as M(𝑋) = 𝑓 (𝑋) + (𝑌1, . . . , 𝑌𝑑) where
each 𝑌1, . . . , 𝑌𝑑 ←$ Laplace(Δ𝐺/𝜀) is 𝜀-DP.

Fact 2 (Basic Composition). Let M1 and M2 be a (𝜀1, 𝛿1)-DP and (𝜀2, 𝛿2)-DP algorithm respectively.
M(𝑋) = (M1 (𝑋),M2 (𝑋)) is

(
(𝜀1 + 𝜀2), (𝛿1 + 𝛿2)

)
-DP.

Fact 3 (Post Processing). Let A1 be an (𝜀, 𝛿)-DP algorithm and A2 be a (possibly randomised) post-processing
algorithm. Then the algorithm A(𝑥) = A2 (A1 (𝑥)) is still an (𝜀, 𝛿)-DP algorithm.

Hierarchies. Formally, a hierarchical domain is a set U associated with a partial order (≻). In streaming
literature [Mitzenmacher et al., 2012, Cormode et al., 2003], this partial order is often represented by a
function called Generalise : U → U which maps elements of the universe to other elements in the universe4.
In this work, it suffices to think of a hierarchical domain as the set of elements that has one to one mapping
with the nodes of a rooted tree with finite arity5. For any element 𝑥 ∈ U, Generalise(𝑥) refers to the parent
or prefix of 𝑥. We say an element ∗ is fully generalised or the root of the tree if Generalise(∗) = ∗. We
say an element 𝑒 is fully specified if there exists no 𝑠 ∈ U such that 𝑒 = Generalise(𝑠) (𝑒 is a leaf node of
the rooted tree representing the hierarchy). We denote by Generalise(𝑘 ) (𝑥) as the ancestor of 𝑥 that is 𝑘

steps away in the tree representation (element obtained by applying Generalise 𝑘 times on 𝑥). The pair
(U,Generalise) defines a hierarchical domain H . The height ℎ of the hierarchy represents the maximum
number of times any fully specified element must be generalised to get a fully generalised element (or more
simply, the height of the tree representing the hierarchy). As a concrete example of a single-dimensional
hierarchy, one can imagine U to be the set of prefixes of ℎ-bit strings. When ℎ = 4, this universe has 16
fully specified elements: 0000, 0001, . . . , 1111. The prefix 000∗ is a generalisation of 0000 and 0001. We use
notation 𝑥 ≻ 𝑝 (read as 𝑝 is reachable from 𝑥) if there exists a 𝑘 ∈ N such that 𝑝 = Generalise(𝑘 ) (𝑥), and
𝑥 ⪰ 𝑝 if 𝑝 = Generalise(𝑘 ) (𝑥) ∨ 𝑥 = 𝑝.

Remark. Henceforth, we assume that any dataset 𝑋 is a multiset of fully specified elements from some
hierarchical universe H of height ℎ.

Definition 2.4: Unconditional Count Or Absolute Frequency

Given a dataset 𝑋, the unconditional frequency of any element 𝑝 ∈ H , denoted by 𝑓𝑋 (𝑝), is the number
of elements in 𝑋 that generalise to 𝑝. Writing 1[·] for the indicator function,

𝑓𝑋 (𝑝) =
∑

𝑒∈𝑋 1[𝑒 ⪰ 𝑝]

In Figure 1, the unconditional counts of each node are written next to each node in the tree for the figure
on the right.

4Generalise encodes partial order binary relation 𝑅 : U × U → {0, 1}, such that 𝑅 (𝑥, 𝑝) = 1 ⇐⇒ 𝑝 = Generalise(𝑥 )
5The HHH literature also considers multi-dimensional hierarchies, where the universe is represented by nodes of a lattice

rather than a rooted tree. However, in this work, we focus on single dimensional hierarchies which can be represented by a tree.
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Definition 2.5: Residual Count/Conditional Frequencies

Given a dataset 𝑋, and a set S ⊆ H , we say 𝑥 ⊁ S if �𝑞 ∈ S such that 𝑥 ⪰ 𝑞. We define the conditional
or residual count 𝐹S (𝑝) of a prefix 𝑝 with respect to S as the sum of all fully specified elements who do
not have a parent already in S.

𝐹S (𝑝) =
∑

𝑒∈𝑋∧𝑒⪰𝑝∧𝑒⊁S 𝑓𝑋 (𝑒)

In the left tree in Figure 1, the set S is shown by nodes in blue, and the conditional count with respect to
S is written by each node.

Definition 2.6: Level Of A Node/Prefix

The level of a prefix 𝑝 ∈ H is the (minimum) number of applications of Generalise to reach ∗ i.e.
Level(𝑝) = 𝑘 ⇐⇒ ∗ = Generalise(𝑘 ) (𝑝)

For example, let H be the set of 4-bit bistrings. If we generalise 011∗ three times we get to ∗, so the level
of the prefix is 3. The fully specified elements or leaf elements are at level ℎ = 4 and ∗ is at level 0. With
these definitions in place, we can formally define the concept of a heavy hitter and a hierarchical heavy hitter.

Definition 2.7: Exact Heavy Hitters

For dataset 𝑋 and threshold 𝜏 ∈ R, we say prefix 𝑝 is a heavy hitter (HH) if 𝑓𝑋 (𝑝) > 𝜏. The set of
heavy hitters of 𝑋 is HH = {𝑒 ∈ 𝑋 : 𝑓𝑋 (𝑒) ≥ 𝜏}.

Definition 2.8: Exact Hierarchical Heavy Hitters

The set of exact hierarchical heavy hitters is defined inductively. Let 𝑋 denote a dataset drawn from a
hierarchy of height ℎ, then
(1) HHH ℎ denotes the exact heavy hitters in 𝑋.
(2) For any prefix 𝑝 at level 0 ≤ 𝑙 < ℎ, let 𝐹HHH𝑙+1 (𝑝) be the residual count (Defn. 5) of 𝑝 given
HHH 𝑙+1. Then HHH 𝑙 is defined as HHH 𝑙+1 ∪ {𝑝 ∈ Level(𝑙) : 𝐹HHH𝑙+1 (𝑝) ≥ 𝜏}
(3) HHH0 is the set of exact hierarchical heavy hitters of 𝑋.

Figure 1 illustrates this difference between heavy hitters and hierarchical heavy hitters.
Approximate Hierarchical Heavy Hitters. In this paper, the function 𝑓 that our algorithm M computes
is the hierarchical heavy hitters of a dataset 𝑋. By definition, differential privacy restricts us from outputting
exact answers or using a deterministic algorithm to compute approximate values. As the output must be
random, we can no longer output exact counts of the hierarchical heavy hitter problem. Thus, keeping in line
with the definitions introduced in [Mitzenmacher et al., 2012, Cormode et al., 2003] we define the task of
approximate heavy hitters, where the estimates are within some approximation error Δ with high confidence.
As we now have noise in the system, we relax the threshold by Δ units, where Δ allows the error to grow larger
for larger values (i.e., relative error). Clearly the smaller the value of Δ, the closer we are to the definition
of exact hierarchical heavy hitters. The coverage constraint says we want to be conservative and not miss
out on potential heavy hitters due to DP noise i.e., prevent false negatives6. Our goal is to come up with a
theoretical bound on the error, and show that the error is small enough for practical use cases.

6We constrain on false negatives instead of false positives to stay aligned with the definitions in prior works. Our results still
hold if we constrain on false positives.
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Problem 1 (Private Approximate Hierarchical Heavy Hitters). Let M denote an algorithm that receives as
input a multi set 𝑋 of 𝑛 fully specified elements from some hierarchical domain H . Fix a public threshold
𝜏 ∈ R, a confidence parameter 𝜂 ∈ (0, 1), privacy parameters 𝜀 ∈ (0, log 𝑛) and 𝛿 = negl(𝑛). We say the
algorithm M correctly finds approximate private hierarchical heavy hitters with relative error (𝜏,Δ) if it outputs
S ⊂ H and approximate counts 𝑓̃𝑋 (𝑝) such that:

1. Privacy: M is (𝜀, 𝛿)-DP.

2. Simultaneous Relative Error: With probability 1 − 𝜂 we have max𝑝∈H

��� 𝑓𝑋 (𝑝)− 𝑓̃𝑋 (𝑝)𝑓𝑋 (𝑝)

��� ≤ Δ
𝜏
.

3. Coverage: For any prefix 𝑝 ∉ S, 𝐹S (𝑝) ≤ 𝜏 − Δ with probability 1 − 𝜂, with 𝐹S (𝑝) as defined in
Definition 5.

We want to show that in the non-streaming setting, the relative error Δ of our algorithm does not grow
linearly with the the height of the hierarchy7, and is independent of the number of heavy hitters in the
hierarchy (as discussed in the introduction above). In the streaming setting we will have to deal with error
due to privacy and lack of space. Thus, the streaming version of our problem is the exact same problem with
limited space.

Problem 2 (Streaming Private HHH). The streaming problem is to solve Problem 1 with a constant amount
of space 𝜅 = 𝑂 (1).

Of course, to prevent the problem from being degenerate, we will assume that the amount of space
available is significantly smaller than the size of the stream 𝑛 or the size of the universe |H |.

3 Offline Private Hierarchical Heavy Hitters

In this section, we tackle the offline version of the problem, with no space constraints. Before describing the
complete protocol and showing how it solves Problem 1, we provide an intuitive explanation of the techniques
used to circumvent the dependence the height of the hierarchy and the number of hierarchical heavy hitters
by working through a sequence of attempts. Let H denote a hierarchy with height ℎ and let 𝑋 denote a
dataset of 𝑛 fully specified elements drawn from H .
Laplace histograms. Observe that the unconditional frequencies for each prefix of the hierarchy can be
estimated by computing ℎ histograms for each level of the hierarchy. For two neighbouring datasets 𝑋 and
𝑋 ′ that differ by a single input only, there is exactly one node per level for which the unconditional frequency
of the nodes differ by one under 𝑋 and 𝑋 ′. Thus, a first approach to hierarchical heavy hitter estimation is
to release ℎ Laplace histograms by adding noise drawn from a Laplace noise distribution with scale ℎ

𝜀
to

every node in the hierarchy. By the privacy of the Laplace histograms (Fact 1), each level is 𝜀/ℎ-private. As
any node contributes to at most ℎ counts, by basic composition and the privacy of the Laplace mechanism,
the set of realised counts is (𝜀, 0)-DP. Then, one could compute hierarchical heavy hitters via post-processing,
which does not affect the privacy of the algorithm (Fact 3). As we add noise with scale ℎ

𝜀
to each node in

H , the DP error per node scales linearly in the height of the hierarchy. Furthermore, if we wanted to upper
bound the simultaneous error over all prefixes in the hierarchy, then we need to apply the union bound over
all nodes of the hierarchy. As the number of nodes is exponential in the height of the hierarchy, the relative
estimation error scales poly(ℎ).
Stability Histograms. One solution to circumventing such a union bound over all the elements of the
universe when the size of the universe is very large is to use stability histograms [Bun et al., 2019, Balcer
and Vadhan, 2017, Thakurta and Smith, 2013] instead of Laplace histograms. For fixed privacy parameters
𝜀 ∈ (0, log 𝑛) and 𝛿 = negl(𝑛), the key intuition behind stability histograms is that if we only released private
estimates (using the Laplace mechanism) for nodes with “large enough” non-zero frequency, the simultaneous
error bound improves from log( |H |) to log(𝑛) < log(1/𝛿) (as there are at most 𝑛 elements in 𝑋). This is

7As we want to bound the worst case simultaneous relative error for any element in the hierarchy, logarithmic dependence on
height is unavoidable (via the union bound).
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advantageous when |H | ≫ 𝑛 meaning that many nodes have zero frequency. For such nodes, we incur no
error at all (as the algorithm ignores them).

However, this technique cannot achieve pure DP as was possible in the Laplace histogram case. Observe
that if 𝑋 ′ contains an element 𝑥′ that is not present in 𝑋 (we call such an 𝑥′ isolated), an adversary can
perfectly distinguish between 𝑋 and 𝑋 ′ if the count of this element, albeit noisy, appeared in the output (as
when processing 𝑋, nodes representing generalisations of 𝑥′ would have frequency 0, and would be ignored).
Nevertheless, since stability histograms only output counts for elements with “large” counts, and as the
frequency of such an isolated element 𝑥′ is 1 (from the definition of neighbouring datasets), we can set the
frequency threshold for “large enough” such that with probability at least 1− 𝛿 the isolated element will never
show up in the final output. This is sufficient to achieve (𝜀, 𝛿)-DP. Over the whole tree representing the
hierarchy, the case where 𝑥′ distinguishes 𝑋 and 𝑋 ′ can occur at at most ℎ levels of H . Thus, if we output
stability histograms with 𝛿′ = 𝛿/ℎ at each level then, by basic composition, the final output does not contain
any isolated elements with probability at least 1 − 𝛿. In this way, stability histograms allow us to circumvent
the union bound over all the nodes in H , at the cost of going from pure to approximate DP. It does not
however, circumvent the issue discussed above where the scale of the DP noise is ℎ

𝜀
.

DP Counting On Trees. One approach to resolving this issue is to make repeated use of the Above-
Threshold Algorithm by Dwork et al. [2009]. Given a hierarchy H then, by definition, there can be at
most 𝑐 = 𝑛

𝜏−Δ hierarchical heavy hitters. Observe that 𝑐 is a constant that depends only on 𝜏 and Δ, and
is independent of the height of the hierarchy ℎ. When the height of the hierarchy ℎ is large and 𝑐 ≪ ℎ,
we would incur lower per-node DP error if the scale of the noise were 𝑐

𝜀
instead of ℎ

𝜀
. Ghazi et al. [2022]

observed this fact and proposed an algorithm that traverses the tree bottom up. At each level of the tree,
their algorithm inspects only one node, the one with maximal unconditional count for that level. There are
at most ℎ such nodes (one per level). However, even in the worst case, at most 𝑐 out of ℎ of these nodes
can be conditionally heavy. Thus, we have ℎ counting queries, out of which 𝑐 are conditionally heavy. Their
solution uses the Sparse Vector Technique (SVT) by composing Above-threshold ℎ times, but they pay only
for the 𝑐 conditionally heavy nodes. Once 𝑐 levels have been identified, the algorithm prunes the tree, and
restricts it to just the 𝑐 levels with at least one conditionally heavy node. Then it estimates the counts of
the pruned tree by solving 𝑐 instances of the private stability histogram estimation problem8 with privacy
budget 𝜀/𝑐. As commented in the introduction, although this is an asymptotic improvement, it is very hard
to imagine cases where 𝑐 ≪ ℎ. Thus, the simple Laplace stability histograms with composition error ℎ would
outperform the algorithm by Ghazi et al. [2022] in almost all feasible situations.
Our Approach. Our algorithm is based on the following critical observation. Although it is true that
there are at most 𝑐 conditionally heavy levels in the tree, only one of the conditionally heavy nodes is really
influenced by 𝑥′. For the remainder of the heavy nodes, there is no difference in the conditional frequencies
of 𝑋 and 𝑋 ′. It is this structure that we exploit to improve error our guarantees. In prior work, Kaplan
et al. [2021] show that there are instances where the composition error of the SVT algorithm is suboptimal,
even when dealing with a stream of adaptively chosen queries by an unbounded adversary. Instead, they
propose a general algorithm (called Threshold Monitor) where DP error of a query scales linearly by a
constant 75𝜀 (𝑘+1)

log 1/𝛿 , where 𝑘 represents the number of times any data point can contribute to a counting query
being heavy. Note that both the SVT algorithm and Threshold monitor are general and accommodate a
stream of adaptively chosen counting queries with no structure. In estimating HHH in the non-streaming
setting with central differential privacy, we can pre-select the order of queries to be bottom up (leveraging
monotonicity and limited influence of any node), and we do not have to deal with adaptive queries. Thus,
in the case of hierarchical heavy hitter estimation, paying a price of 𝑐/𝜀 of SVT or the larger constants of
Threshold Monitor for adaptivity in composition is wasteful. Instead, we can use a simpler algorithm, and
with more specialized privacy analysis we show that DP noise per node with scales 4

𝜀
instead of 𝑐

𝜀
, and thus

is independent of both the height of the hierarchy and the number of heavy hitters in H . Note that this
matches the constants for Sparse Vector Technique for the non-hierarchical private algorithm for detecting a
single heavy query from a stream [Balcer and Vadhan, 2017]. Thus, this is the best one can hope to do.

8While Ghazi et al. do not explicitly refer to stability histograms, their use of bounded truncated Laplace noise is equivalent.
In the case of bounded noise, the union bound is affected by the size of the support of the truncated noise distribution, which is
upper bounded by 𝑂 (1/𝛿 ). For stability histograms, it is affected by the number of elements which is upper bounded by 1/𝛿.
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Algorithm 1: Non-Streaming DP-HHH Detection
Data: Data 𝑋 of size 𝑛 over hierarchy H with height ℎ, Privacy parameter 𝜀 ∈ (0, log 𝑛), 𝛿 = negl(𝑛),

Threshold 𝜏 > 0
Result: Approximate Hierarchical Heavy Hitters S, and, their approximate frequencies { 𝑓̃𝑋 (𝑝)}𝑝∈S .

1 If 𝜏 < 8
𝜀
log(2ℎ/𝛿) + 1, output ({}, 0) and end program ;

2 𝛾 ←$ Laplace( 2
𝜀
);

3 S = {};
4 for 𝑖 = ℎ, . . . , 1 do
5 A𝑖 = {𝑝 ∈ H |Level(𝑝) = 𝑖} ;
6 for 𝑝 ∈ A𝑖 do
7 if 𝐹S (𝑝) = 0 then
8 continue to next iteration;

9 𝑤𝑝 ←$ Laplace( 4
𝜀
);

10 if 𝐹S (𝑝) + 𝑤𝑝 + 𝛾 ≥ 𝜏 then
11 S = S ∪ {𝑝};
12 𝐹S (𝑝) = 𝐹S (𝑝) + Laplace( 4

𝜀
)

13 Output S and {𝐹S (𝑝)}𝑝∈S .

Theorem 3.1: Privacy

The DP-Hierarchical Heavy Hitters algorithm described in Algorithm 1 is (𝜀, 𝛿)-DP.

Proof. Let 𝑋 be a database of 𝑛 fully specified elements from some hierarchical domain H with height ℎ.
Let 𝑚 = |H | denote the number of elements in the hierarchy. Let 𝑋 ′ = 𝑋 ∪ {𝑥′}. Fix privacy parameters
𝜀 ∈ (0, log 𝑛), 𝛿 ∈ 𝑜 (𝑛), and let 𝜏 denote the public threshold. Let S be any general output of the algorithm.
As S is general, our goal is to show that with probability 1 − 𝛿, Pr [M(𝑋) = S] ≤ 𝑒𝜀 Pr [M(𝑋 ′) = S]. Our
proof proceeds by breaking this probability over a large output space into smaller events. We can condition
that the outputs on 𝑋 and 𝑋 ′ are the same prior to each event we analyze — if not, then the outputs already
differ, and this contribution to the probability has already been accounted for. We denote each element in
H with integers {1, 2, . . . , 𝑚} based on the order9 in which Algorithm 1 processes them (we traverse the
tree bottom up in level order). For an element 𝑖 ∈ H , let 𝑎𝑖 ∈ R denote 𝑖’s noisy residual count if 𝑖 ∈ S
(Line 12). If 𝑖 ∉ S, then set 𝑎𝑖 = ⊥. Subsequently, we use the shorthand 𝑎𝑖 = ⊤ to mean 𝑎𝑖 ≠ ⊥. Thus the
vector ®𝑎 = (𝑎1, . . . , 𝑎𝑚) completely describes the output of the algorithm for any general S. Let 𝛽𝑖 denote the
random variable that describes our algorithm’s output for element 𝑖 when 𝑋 is used as the input. Similarly, let
𝛽′
𝑖

denote the random variable that describes the algorithm output when 𝑋 ′ is used as the input. Then using

the notation described above Pr [M(𝑋) = S] = ∏𝑚
𝑖=1 Pr

[
𝛽𝑖 = 𝑎𝑖 | ®𝛽−𝑖 = ®𝑎−𝑖

]
, where ®𝛽−𝑖 = (𝛽1 . . . , 𝛽𝑖−1) and

®𝑎−𝑖 = (𝑎1, . . . , 𝑎𝑖−1). We define the inflection node 𝑢★ ∈ H , to be the first generalisation of 𝑥′ that is included
in the output as a hierarchical heavy hitter. That is �𝑞 ∈ S such that 𝑞 ≻ 𝑢★. We denote with 𝑖★ = Level(𝑢★).
In Figure 2 such a node is depicted in orange. If such a node does not exist i.e., no generalisation of 𝑥′ is
included in S, then set 𝑖★ = 0 (an imaginary level above the root of the tree). Given 𝑢★, observe that we can
partition H into 3 sets.

1. IUnrelated = {𝑣 ∈ H |𝑥′ ⪰̸ 𝑣} (shown in blue in Figure 2)

2. IAfter = {𝑣 ∈ H |𝑢★ ≻ 𝑣} (shown in grey in Figure 2).

3. IActive = H \ (IUnrelated ∪ IAfter) (denoted by all nodes that are green and orange in Figure 2).
9The algorithm output be the same if we traverse the tree in post order. The key point is we always process all the descendants

of an element before processing any element.
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Figure 2: The figure above describes the partitioning of H assuming the neighbouring element 𝑥′ is not isolated.
The nodes in blue (IUnrelated) denote all the nodes whose residual frequencies are unaffected by the presence of 𝑥′.
The nodes in green are the prefixes whose conditional frequencies include 𝑥′, but their noisy conditional frequency
(Line 10 of Algorithm 1) is below 𝜏. The node in orange is referred to as the inflection node. It is the first prefix
of 𝑥′ whose noisy count crosses the threshold. Together, the green and orange nodes form (IActive). For all nodes
that are generalisations of the inflection node (shown in grey), their conditional count excludes any influence of 𝑥′,
from the definition of conditional count (IAfter).

If 𝑖★ = 0, we set IActive = {𝑞 : 𝑥′ ⪰ 𝑞}, and IAfter = {}. Note that every output S entails some 𝑢★, which
defines the above partitioning of the H . Let 𝑝(𝛽𝑖 , 𝑎𝑖) denote shorthand for Pr

[
𝛽𝑖 = 𝑎𝑖 | ®𝛽−𝑖 = ®𝑎−𝑖

]
. Then,

given S, we have
𝑚∏
𝑖=1

𝑝(𝛽𝑖 , 𝑎𝑖) =
∏

𝑖∈IUnrelated

𝑝(𝛽𝑖 , 𝑎𝑖)
∏

𝑖∈IActive

𝑝(𝛽𝑖 , 𝑎𝑖)
∏

𝑖∈IAfter

𝑝(𝛽𝑖 , 𝑎𝑖) (1)

Unrelated Nodes. Observe that for any 𝑝 ∈ IUnrelated, we have 𝑓𝑋 (𝑝) = 𝑓𝑋′ (𝑝). Also observe for any 𝑞 ≻ 𝑝,
we also have 𝑞 ∈ IUnrelated. This implies that the residual counts (Definition 5) of 𝑝 are the same under 𝑋

and 𝑋 ′ i.e., 𝐹S (𝑝) = 𝐹′S (𝑝). In other words, if we restrict to just these nodes 𝑋 and 𝑋 ′ are exactly the same.
Thus for any 𝑖 ∈ IUnrelated,

Pr
[
𝛽𝑖 = ⊤| ®𝛽−𝑖 = ®𝑎−𝑖

]
= Pr [𝐹S (𝑖) + 𝑤𝑖 + 𝛾 ≥ 𝜏]

= Pr
[
𝐹′S (𝑖) + 𝑤𝑖 + 𝛾 ≥ 𝜏

]
= Pr

[
𝛽′𝑖 = ⊤| ®𝛽′−𝑖 = ®𝑎−𝑖

]
After Nodes. A similar observation can be made about any 𝑖 ∈ IAfter. First observe that given any S, if
𝑖★ = 0, then |IAfter | = 0, and we do not have to deal with this partition at all. Assume that |IAfter | ≥ 1. This
implies there is some node 𝑢★ ∈ S that generalises to nodes in IAfter. By its definition, for all 𝑝 ∈ IAfter,
𝐹′S (𝑝) does not contain the count for 𝑥′. This is true because 𝑢★ ∈ S, and 𝑢★ is the first generalisation of 𝑥′
that is included in S. So 𝐹′S (𝑢

★) = 𝑓𝑋′ (𝑢★). This implies that when computing residual counts for a node
𝑖 ∈ IAfter, it is the same as if 𝑥′ never existed at all. Thus once again we have for all 𝑖 ∈ IAfter, 𝐹S (𝑖) = 𝐹′S (𝑖),
and using the argument above, Pr

[
𝛽𝑖 = ⊤| ®𝛽−𝑖 = ®𝑎−𝑖

]
= Pr

[
𝛽′
𝑖
= ⊤| ®𝛽′−𝑖 = ®𝑎−𝑖

]
.

Active Nodes. The above arguments have shown that the mechanism output distribution is identical for
IUnrelated and IAfter. This means that the entire loss in privacy comes from IActive, which is a subset of nodes
on the path from 𝑥′ to the root. Notice that |IActive | could be as large as ℎ, so it might appear that we will
have to pay for composition ℎ times. However, we show that this is not true: with probability 1 − 𝛿, we only
need to pay twice, once for all nodes below 𝑢★, and once for 𝑢★. Define 𝑡 = |IActive | = ℎ − 𝑖★. Observe that for
any prefix 𝑝 ∈ IActive, it may be in one of the two scenarios.

Case I (Isolated Prefix): The prefix 𝑝 is isolated i.e., 𝑓𝑋 (𝑝) = 0 but 𝑓𝑋′ (𝑝) = 1 (shown by the bottom
image of Figure 3a). Such an event can happen at most ℎ times at each level of the tree (as illustrated in
the right of Figure 3b). Now in this regime, if 𝛽′𝑝 ≠ ⊥, then one could perfectly distinguish between 𝑋 and
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<latexit sha1_base64="g18plxlLmzRbcIeYK7a2spJyOjY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tWqteV2pkzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ArxGMxQ==</latexit>

X
<latexit sha1_base64="XUwzTTmtKTE+Jvk+CBYAJwzG1Wc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEqseCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Dnvlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqserVq7f6qUid5HEU4gVO4AA+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Aw94jPY=</latexit>

X 0

<latexit sha1_base64="g18plxlLmzRbcIeYK7a2spJyOjY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tWqteV2pkzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ArxGMxQ==</latexit>

X
<latexit sha1_base64="XUwzTTmtKTE+Jvk+CBYAJwzG1Wc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEqseCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Dnvlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqserVq7f6qUid5HEU4gVO4AA+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Aw94jPY=</latexit>

X 0

<latexit sha1_base64="g18plxlLmzRbcIeYK7a2spJyOjY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tWqteV2pkzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ArxGMxQ==</latexit>

X
<latexit sha1_base64="XUwzTTmtKTE+Jvk+CBYAJwzG1Wc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEqseCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Dnvlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqserVq7f6qUid5HEU4gVO4AA+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Aw94jPY=</latexit>

X 0

(a) (b)

Figure 3: The figure on the left (a) illustrates the two possibilities when dealing with neighbouring inputs at any
fixed level of the hierarchy. Here 𝑋 and 𝑋 ′ = 𝑋 ∪ 𝑥′ denote two arbitrary neighbouring datasets. The location of
𝑥′ is denoted in green. In the case of the top left figure, the unconditional frequency of 𝑥′ is greater than 0 for
both datasets (we refer to such a 𝑥′ as a merged element). In the bottom left figure, 𝑥′ has a frequency of 1 in 𝑋 ′

and 0 in 𝑋 (which we refer to as being isolated). The figure (b) on the right denotes two neighbouring datasets 𝑋

and 𝑋 ′, where at every level of the hierarchy 𝑥′ and its generalisations are isolated.

𝑋 ′ (as 𝛽𝑝 = ⊥ always, by Line 8 of Algorithm 1). In order for 𝛽′𝑝 = 𝑎𝑝, where 𝑎𝑝 ≠ ⊥, we need the noise
introduced for privacy (Line 10 in Algorithm 1) to push the residual count of 𝑝 above 𝜏 > 1 + 8

𝜀
log(2ℎ/𝛿)

(from the assumption on Line 1). Let 𝛼 = 8
𝜀
log(2ℎ/𝛿). Let 𝐸1 denote the event that |𝛾 | ≤ 𝛼/2 and 𝐸2

denote the event that |𝑤𝑝 | ≤ 𝛼/2. If Pr[𝐸1 ∩ 𝐸2] ≥ 1 − 𝛿, then with probability 1 − 𝛿, 𝛽′𝑝 = ⊥, and 𝑝 is
not included in S (as the total randomness is not enough to push the noisy count over 𝜏). From the tail
bounds of the Laplace distribution we have that if 𝛼 ≥ 8

𝜀
log(2ℎ/𝛿), then Pr𝛾←$Laplace(2/𝜀)

[
|𝛾 | > 𝛼/2

]
≤ 𝛿

2ℎ ,

and Pr𝑤𝑝←$Laplace(4/𝜀)
[
|𝑤𝑝 | > 𝛼/2

]
≤ 𝛿

2ℎ . Hence, at any level, the probability of an isolated prefix showing

up in the output is Pr[(𝐸1 ∩ 𝐸2)] ≤ 𝛿
ℎ
. There are at most ℎ isolated prefixes, in the worst case (as shown

in Figure 3b), so taking the union bound over ℎ levels of the tree, we get that any isolated prefix shows up
with probability at most 𝛿. Thus the output of the Algorithm 1 when the neighbouring element 𝑥′ remains
isolated throughout is (0, 𝛿)-private. Note that we might have fewer than 𝑡 levels of the tree when any prefix
𝑝 is isolated. Setting 𝜏 > 1 + 8

𝜀
log(2ℎ/𝛿) we cover the worst case, thereby all other cases.

Case II (Merged Neighbour): In this regime, 𝑓𝑋 (𝑝) > 0 and 𝑓𝑋′ (𝑝) > 0. In other words, 𝑝 is not
isolated. Observe that for any 𝑝 ≻ 𝑞 we have 𝑞 is also not isolated i.e., 𝑓𝑋 (𝑞) > 0 and 𝑓𝑋′ (𝑞) > 0. This is true
because going up one level 𝑝 merges into a node 𝑞 that is a generalisation of more elements than 𝑝. As 𝑝 was
not isolated, 𝑞 cannot be isolated. In other words, let level 𝑗 = Level(𝑝). For all 1 ≤ 𝑖 < 𝑗 , the algorithm
stays in the non-isolated regime. Let 𝑡 = |IActive |, and label the elements in IActive with (𝑝1, 𝑝2, . . . , 𝑝𝑡−1, 𝑢★),
where 𝑝𝑖 ≻ 𝑝 𝑗 if 𝑖 < 𝑗 . Given S, we have that for all 𝑖 ∈ [𝑡 − 1], 𝑝𝑖 ∉ S and therefore both 𝐹′S′ (𝑝) = 𝑓𝑋′ (𝑝),
and 𝐹S (𝑝) = 𝑓𝑋 (𝑝). Let ®𝑤 = 𝑤𝑝1

, . . . , 𝑤𝑝𝑡−1 . We have∏
𝑖∈IAfter

𝑝(𝛽𝑖 , 𝑎𝑖) (2)

= Pr
[
𝛽𝑝1

, . . . , 𝛽𝑝𝑡−1 , 𝛽𝑢★ = (⊥)𝑡−1⊤
]

(3)

=

𝑡−1∏
𝑖=1

Pr
𝛾, ®𝑤

[
𝑓𝑋 (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏

]
· Pr
𝛾,𝑤𝑢★

[
𝑓𝑋 (𝑢★) + 𝑤𝑢★ + 𝛾 ≥ 𝜏

]
(4)

Writing 𝑖∗ = argmax𝑖=1,...,𝑡−1 𝑓𝑋 (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾, we analyse the first product term:

𝑡−1∏
𝑖=1

Pr
𝛾, ®𝑤

[
𝑓𝑋 (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏

]
(5)

=

𝑡−1∏
𝑖=1

Pr
𝛾

[
𝑓𝑋 (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏 |𝑤𝑝𝑖

]
Pr

[
𝑤𝑝𝑖

]
(6)

=

𝑡−1∏
𝑖=1

Pr
[
𝑤𝑝𝑖

] 𝑡−1∏
𝑖=1

Pr
𝛾

[
𝑓𝑋 (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏 |𝑤𝑝𝑖

]
(7)
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= Pr
𝛾

[
𝑓𝑋 (𝑝𝑖∗) + 𝑤𝑝𝑖∗ + 𝛾 < 𝜏 |𝑤𝑝𝑖∗

] 𝑡−1∏
𝑖=1

Pr
[
𝑤𝑝𝑖

]
(8)

≤ 𝑒𝜀/2 Pr
𝛾

[
𝑓𝑋 (𝑝𝑖∗) + 𝑤𝑝𝑖∗ + 𝛾 + 1 < 𝜏 |𝑤𝑝𝑖∗

] 𝑡−1∏
𝑖=1

Pr
[
𝑤𝑝𝑖

]
(9)

= 𝑒𝜀/2
𝑡−1∏
𝑖=1

Pr
[
𝑤𝑝𝑖

] 𝑡−1∏
𝑖=1

Pr
𝛾

[
𝑓𝑋′ (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏 |𝑤𝑝𝑖

]
(10)

= 𝑒𝜀/2
𝑡−1∏
𝑖=1

Pr
𝛾, ®𝑤

[
𝑓𝑋′ (𝑝𝑖) + 𝑤𝑝𝑖 + 𝛾 < 𝜏

]
(11)

Equation (8) comes from the fact that as we are conditioning on 𝑤𝑝𝑖 , for all 𝑖 ∈ [𝑡 − 1], and thus we can
treat 𝑓𝑋 (𝑝𝑖) +𝑤𝑝𝑖 as a constant. Then the the statement 𝑓𝑋 (𝑝𝑖) +𝑤𝑝𝑖 + 𝛾 < 𝜏, for all 𝑡 − 1 queries is equivalent
to the statement that 𝑓𝑋 (𝑝𝑖∗) + 𝑤𝑝𝑖∗ + 𝛾 < 𝜏 (as the same randomness i.e., 𝛾 is added to all constant queries).
Thus we have found a single query which covers all 𝑡 − 1 queries, and thus the actual degree of variability is 1,
despite there being (𝑡 − 1) one-sensitive queries10. Finally, by the privacy of the Laplace Mechanism we have,

Pr
𝑤𝑢★←$Laplace(4/𝜀)

[
𝑓𝑋 (𝑢★) + 𝑤𝑢★ + 𝛾 ≥ 𝜏 |𝛾

]
Pr [𝛾]

≤ 𝑒𝜀/4 Pr
𝑤𝑢★←$Laplace(4/𝜀)

[
𝑓𝑋′ (𝑢★) + 𝑤𝑢★ + 𝛾 ≥ 𝜏 |𝛾

]
Pr [𝛾]

We “pay” 𝜀/4 to estimate the residual frequency of 𝑢★ in Line 12. Note, it is important that we use fresh
random noise at this point, as otherwise the output is not guaranteed to be meet the DP requirements,
similar to the sparse vector technique Lyu et al. [2016]. Then, applying basic composition, Pr [𝛽𝑢★ = 𝑎𝑢★] ≤
𝑒𝜀/2 Pr

[
𝛽′
𝑢★

= 𝑎𝑢★
]
. Combining this with (11), and the fact that there is no privacy loss in IAfter and IUnrelated,

we get that Pr [M(𝑋) = S] ≤ 𝑒𝜀 Pr [M(𝑋 ′) = S] with probability 1 − 𝛿. □

Theorem 3.2: Coverage And Error

Let S denote the set of hierarchical heavy hitters selected by Algorithm 1. Then with probability
1 − 𝜂, for all 𝑝 ∉ S, 𝐹S (𝑝) ≤ 𝜏 − Δ. Additionally, for all 𝑝 ∈ H with probability 1 − 𝜂 we have
max𝑝∈H

��� 𝑓𝑋 (𝑝)− 𝑓̃𝑋 (𝑝)𝑓𝑋 (𝑝)

��� ≤ Δ
𝜏
, where

Δ =
8

𝜀

(
log

[
1

𝛿

]
+ log

[
2ℎ

𝜂

] )
The analysis for coverage and error follows from the tail bounds of the Laplace distribution and the union
bound.

Proof. Coverage: We give exact answers for any node 𝑝 with 𝐹S (𝑝) = 𝐹S (𝑝) = 0. For each level of the tree we
have 𝑛+1 Laplace variables. From the tail bounds of the Laplace distribution we have with probability 1−𝜂/ℎ,
the error for any node is upper bounded by 𝑂

(
1
𝜀
log

(
𝑛ℎ
𝜂

))
≤ 𝑂

(
1
𝜀
log

(
ℎ
𝛿𝜂

))
= 𝑂

(
1
𝜀

(
log

[
1
𝛿

]
+ log

[
ℎ
𝜂

] ))
. So

if we set Δ = Ω

(
1
𝜀

(
log

[
1
𝛿

]
+ log

[
ℎ
𝜂

] ))
, then take the union bound over ℎ levels of the tree, we have with

probability 1 − 𝜂 that the DP noise is upper bounded by
��𝑤𝑝 + 𝛾 ≤ Δ

��. As 𝑝 ∈ S only if 𝐹S (𝑝) + 𝑤𝑝 + 𝛾 ≥ 𝜏,
we have with probability 1 − 𝜂 that 𝐹S (𝑝) ≥ 𝜏 − Δ, as required.

Relative Error: Notice that even without any DP noise, if we used just the hierarchical heavy hitters to
10This section of the analysis is closely related to the analysis of the Above Threshold Algorithm by Dwork et al. [2007].
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estimate the frequency of a prefix 𝑝 ∉ S, in the worst case, with probability 1 − 𝜂 we underestimate the
unconditional frequency of 𝑝 by a factor of 𝜏 − Δ. For any 𝑝 ∉ S,

𝑓𝑋 (𝑝) −
∑︁

𝑞∈S∧𝑞⪰𝑝
𝐹S (𝑞) ≤ 𝜏 − Δ

where 𝑐𝑝 denotes the number of hierarchical heavy hitters used to estimate the frequency of 𝑝 i.e.,
𝑐𝑝 = |{𝑞 ∈ S : 𝑞 ⪰ 𝑝}|. Of course if 𝑝 ∈ S, then using residual frequencies allow us to perfectly estimate the
unconditional frequency of 𝑝. Also observe that if we need 𝑐𝑝 nodes to estimate the unconditional frequency
of 𝑝, then we must have 𝑓𝑋 (𝑝) ≥ 𝑐𝑝 · 𝜏. Thus we can easily upper bound the relative error by a small constant
independent of the height of the hierarchy or the number of heavy hitters in the hierarchy, as follows:��� 𝑓𝑋 (𝑝) − 𝑓̃𝑋 (𝑝)

��� (12)

=

������ 𝑓𝑋 (𝑝) − ∑︁
𝑞∈S∧𝑞⪰𝑝

𝐹S (𝑞)

������ (13)

≤

������ 𝑓𝑋 (𝑝) − ∑︁
𝑞∈S∧𝑞⪰𝑝

𝐹S (𝑞)

������ + ∑︁
𝑞∈S∧𝑞⪰𝑝

���𝐹S (𝑞) − 𝐹S (𝑞)
��� (14)

≤ (𝜏 − Δ) + 𝑐𝑝 · Δ (15)

Now since 𝑓𝑋 (𝑝) ≥ 𝑐𝑝 · 𝜏, we get that for any 𝑝 ∉ S����� 𝑓𝑋 (𝑝) − 𝑓̃𝑋 (𝑝)
𝑓𝑋 (𝑝)

����� ≤ 1

𝑐𝑝
+ Δ

𝜏
(16)

Also for any 𝑝 ∈ S, we have ����� 𝑓𝑋 (𝑝) − 𝑓̃𝑋 (𝑝)
𝑓𝑋 (𝑝)

����� ≤ Δ

𝜏
(17)

□

4 Greater Privacy For Larger Groups

As discussed earlier, we only bound the relative error of approximating the unconditional frequency of any
prefix in Equation (16). As pointed out by Ghazi et al. [2022, Page 2], if we instead wanted to upper bound
the worst case absolute error, then it is known that the error must scale linearly with the height of the
hierarchy. The problem of estimating private counts in a tree can be reformulated as releasing a linear query
of the form 𝐴®𝑥 privately, where ®𝑥 is a vector of unconditional counts for all leaves in the hierarchy, and
then finding heavy hitters post processing. The matrix 𝐴 ∈ {0, 1} |H |× |H| adjacency matrix representation
of the tree that represents if one node is a parent of another or not. Releasing linear queries privately has
been exhaustively studied in the privacy community [Zhao et al., 2022, Edmonds et al., 2020, Dwork et al.,
2007, Hardt and Talwar, 2010]. Edmonds et al. [2020] provide lower bounds for the absolute error of linear
queries under pure and approximate differential privacy. They show that even when considering (𝜀, 𝛿)-DP,
the absolute error for any private linear query algorithm scales ∥𝐴∥∞ = Θ(ℎ) (which is the same as just
releasing the entire tree privately with Laplace noise). Remember, we are able to circumvent composition by
leveraging the structure of a hierarchy. Requiring the error of every estimate at every level to be bounded by
the same constant destroys this structure. We cannot use information gained lower down the hierarchy to
make useful claims about elements higher in the hierarchy. We need to treat each level independently as we
want the noise for each node to be independent. Thus the advantage of our algorithm, and that of [Ghazi
et al., 2022, Algorithm 1] is that we can re-use information from earlier queries while still preserving privacy,
paying for absolute error instead. A second advantage to considering relative error, is that it is the more
practical notion of error. This was also observed by Pujol and Desfontaines [2023], who posted as an open
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Algorithm 2: Insertion Operation For A Single MG Sketch
Data: Next data 𝑥 ∈ H , increment 𝑣 > 0.
Result: Inserts 𝑥 into SS sketch T and updates its count by 𝑣.
Parameters :Number of counters 𝜅

1 if 𝑥 ∈ T then
2 𝐶 [𝑥] = 𝐶 [𝑥] + 𝑣 ; // 𝐶 [𝑥] is the count of 𝑥 in T
3 else
4 if 𝐶 [𝑖] ≥ 𝑣 ∀𝑖 ∈ T then
5 𝐶 [𝑖] = 𝐶 [𝑖] − 𝑣 ∀𝑖 ∈ T ;
6 else
7 Let 𝑦 = argmin𝑦∈T 𝐶 [𝑦] ;
8 T = (T \ {𝑦}) ∪ {𝑥};
9 𝐶 [𝑥] = 𝑣 ;

problem the task of finding algorithms that allow larger groups to have more privacy than smaller groups.
When dealing with hierarchies, nodes higher up in the tree by definition can be estimated by counts lower in
the tree (via partitions or hierarchical heavy hitters) - and this information is public knowledge. So we would
like to utitlise this when designing algorithms. Consider the situation where the exact count of a node is 106.
If we incur an absolute error of 100 units when estimating the count of a node, we do not expect that to
affect the final social decision associated with this private statistic. However, when the exact answer is say
99, and we incur an error of 100 units, such a large error in estimation is unacceptable.
Relationship To Counting Over Trees: The estimation error from Theorem 2 can be used to obtain better
results in practice for [Ghazi et al., 2022, Definition 1.4] for the simpler problem of estimating unconditional
frequencies with constant relative error. Note the main difference between our result and that of Ghazi
et al. [2022], is that they add noise with scale 𝑂 (𝑐/𝜀) to estimate the count of any node, regardless of the
distribution of heavy hitters11. In our case, as we show in Equation (16), the relative error is independent
of both the height and the number of hierarchical heavy hitters. Furthermore, our algorithm is simpler to
define. In Ghazi et al. [2022, Algorithm 3], the authors use a geometric progression of decreasing 𝜏’s, and
repeatedly apply [Ghazi et al., 2022, Algorithm 1] on these thresholds to get the relative error guarantee. It
is not clear how to set these thresholds for practical algorithms on real-world datasets, and the constants are
larger than the height of any hierarchical domain in practice.

5 Streaming Private Hierarchical Heavy Hitters

In the previous section we proved that the scale of the DP noise per query scales only by a small constant
factor that is independent of the height of the hierarchy and the number of hierarchical heavy hitters in the
dataset. A critical factor to being able to bypass composition was that there was no space limitation, and we
could store the exact conditional count for every query in memory. This meant that we could eventually
remove the contribution of the neighbouring element 𝑥′ completely (restricting the privacy loss entirely to the
green and orange nodes in Figure 2). Thus for a large majority of queries, neighboring inputs 𝑋 and 𝑋 ′ were
treated identically.

In the streaming setting, we do not have the luxury of storing exact counts. Thus, we will need to use
some streaming data structure [Mitzenmacher et al., 2012, Cormode et al., 2003, Chan et al., 2012] in order
to approximate residual frequencies. In this work, we use one Misra Gries (MG) sketch with 𝜅 counters
per level of the hierarchy. Thus the total space used is 𝑂 (𝜅ℎ). We choose the MG sketch for two reasons.
Firstly, Agarwal et al. [2013] showed that the MG sketch is isomorphic to the Space Saving algorithm, and
Mitzenmacher et al. [2012] show that the space saving algorithm is optimal for non-private hierarchical heavy
hitter estimation. Thus, if we replace SS with MG in the non private HHH estimation problem, we retain the
same optimality results. Secondly, with the MG sketch we leverage the structure in the output to circumvent

11Remember 𝑐 is an upper bound on the total number of hierarchical heavy hitters.
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the composition bounds due to approximation. The main bottleneck in approximation algorithms is that
the approximated function might have large global sensitivity. Indeed Chan et al. [2012] show that the MG
sketch has global sensitivity Δ𝐺 = 𝜅. This implies that if we naively used noise scaled by the sensitivity
of the function, the DP error grows as the streaming error drops. However we are able to leverage the
critical observation made by Lebeda and Tetek [2023, Lemma 5], who show that if the global sensitivity
of the MG sketch is high, then counts of each counter after processing neighbouring streams are highly
correlated. Just like in Section 3 where we made use of monotonicity of residual queries, we will use this
correlation to circumvent composition. Our techniques are related to the more general observation that
structure has often been used to bypass composition in the privacy community [Dwork et al., 2009, 2010,
Kaplan et al., 2021, Hardt and Talwar, 2010]. In summary, to construct our HHH estimation algorithm in
the streaming setting, we first modify the Mitzenmacher et al. [2012] HHH algorithm to use the modified MG
sketch from Lebeda and Tetek [2023] instead of the SpaceSaving algorithm. Then we repeatedly leverage the
structure of the output to bound the DP error to be independent of the available space. Note, we cannot
avoid the approximation error introduced due to lack of space, regardless of privacy. In the streaming setting,
our contribution is to show that the DP error for HHH is not affected by this approximation parameter 𝜅.
Before describing our algorithm, we first provide an overview of the proof behind how we keep the DP error
independent of the number of counters, and why the tricks used in the non-streaming section to make the
noise independent of the height of the hierarchy no longer apply .

5.1 Technical Overview
Our main insight in the non-streaming setting was that the DP noise could be independent of the height of
the hierarchy ℎ. Unfortunately, in the streaming setting, this claim no longer holds true. To fully describe
why, we first re-state a lemma by Lebeda and Tetek [2023, Lemma 5] which formally describes the observed
outcomes when a MG sketch processes neighbouring input streams.

Lemma 1. [Lebeda and Tetek, 2023, Lemma 5 (re-stated)] Let 𝑋 = 𝑋 ′ ∪ {𝑥}. Let (T , 𝐶) ← MG (𝜅, 𝑋) and
(T ′, 𝐶′) ← MG (𝜅, 𝑋 ′) be the output of Algorithm 2 with inputs 𝑋 and 𝑋 ′. Then, |T ∪ T ′ | ≥ 𝜅 − 2; for all
𝑥 ∉ T ∪ T ′, 𝐶 [𝑥] ≤ 1 and 𝐶′ [𝑥] ≤ 1; and exactly one of the following is true:

1. ∃𝑖 ∈ T , such that 𝐶 [𝑖] = 𝐶′ [𝑖] + 1, and ∀ 𝑗 ≠ 𝑖 : 𝐶 [ 𝑗] = 𝐶′ [ 𝑗].

2. ∀𝑖 ∈ T ′ : 𝐶 [𝑖] = 𝐶′ [𝑖] − 1, and 𝐶′ [ 𝑗] = 0 for 𝑗 ∉ T ′.

In the lemma above, (T , 𝐶) and (T ′, 𝐶′) denote the output of the MG algorithm (Algorithm 2) on the
two neighbouring streams 𝑋 and 𝑋 ′. The lemma states that there can be at most 2 elements that are in T ,
but not in T ′, and vice versa. We will refer to these as isolated elements (this is distinct from the isolated
prefixes from the previous section), and if they appear in the final output, an adversary can always tell if an
output was generated by 𝑋 or 𝑋 ′. Furthermore, the count of an isolated element must always be at most 1.
Thus once again, we can use the thresholding trick from stability histograms to suppress isolated elements
with high probability. The threshold for suppression is set a little higher, as there are two isolated elements
instead of one. Along with the above statements, after processing neighbouring data streams, Lemma 1 also
states that the resulting sketches could be in one of two scenarios illustrated in Figure 4. In the first scenario,
shown in Figure 4b, we have two histograms with 𝜅 bins that differ in at most two locations by a count of 1.
All other bins have the exact same values across both sketches. We can easily release private versions of these
histograms by simply applying the Laplace mechanism with suppression of small values. The other scenario,
described by Figure 4a, appears more problematic at first glance. We have that the counts across two outputs
𝐶 and 𝐶′ in the two sketches all differ by the same amount across all the bins. This is undesirable in two
ways. First, now the global sensitivity of the approximated counts is 𝜅, so it appears that the DP noise will
need to scale linearly in 𝜅 (which can be a large constant). Secondly, notice that we can no longer restrict the
influence of differing nodes in T ′ to a single hierarchical heavy hitter like we did in the illustration given
in Figure 2. The neighbouring elements are now spread across all the bins, and they influence multiple
hierarchical heavy hitters. Furthermore, as the MG sketch often under-approximates the true count of an
element (Lemma 2), we cannot guarantee that we have removed the influence of a neighbouring element
higher up in the tree by removing a descendant lower in the tree. This means we cannot restrict the influence

15



Hierarchal Heavy Hitters
Heavy Hitters

5 52

2
5

1
5

100

52
0

4
5

7 8

6
0

3 5 52

2
5

1
5

52
0

4
5

7 8

6
0

3

<latexit sha1_base64="g18plxlLmzRbcIeYK7a2spJyOjY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6tWqteV2pkzyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ArxGMxQ==</latexit>

X
<latexit sha1_base64="XUwzTTmtKTE+Jvk+CBYAJwzG1Wc=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEqseCF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Dnvlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzS+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV0rqserVq7f6qUid5HEU4gVO4AA+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5Aw94jPY=</latexit>

X 0

1

(b)

3 3 4 4 2
4 4 5 5 3

1 0 1 …

1 0 1 …

1 0 1 …

1 1 …

State q

Pointers

1 0 1 …

1 0 1 1 …

1 0 1 …

1 1 …

State q’

Pointers

h
…

k counters

4 4 5 5 3
4 4 5 5 2

0 4 5 5 0
1 4 5 5 0

(a)

MG

Figure 4: The figure above illustrates the implications of Lemma 1. There are two possible configurations after
processing neighbouring streams. One configuration, depicted by figure (a), is that every count in one sketch
is different from the count in the other sketch by one unit in the same direction. The other outcome is that
either exactly one counter is different for all counters that are non-zero in both sketches. Additionally, when in
configurations depicted by Figure(b), there can be at most 2 elements per sketch that are not in the other sketch.
The count of these elements when present is always 1. The second outcome, denoted by figure(b) is identical to
the configuration discussed for stability histograms in the previous section, where each sketch has at most a single
count that is different.

of neighbouring elements and partition the tree like before to avoid paying the privacy loss due to composition
for ℎ levels of the hierarchy. In other words, it seems challenging to circumvent composition bounds due to
the height when using the MG sketch.

Although we cannot remove the dependence on the height of the hierarchy in the streaming setting,
inspired by the observations made by Lebeda and Tetek [2023] and Dwork et al. [2009], we are still able to
remove the dependence on 𝜅. We show that, even in the scenario depicted by Figure 4a, the DP noise is
actually independent of the number of counters in the sketch. This might appear unintuitive at first glance,
as the global sensitivity is still 𝜅. To gain intuition towards understanding why, we first review the privacy
proof for nodes in IActive (green and orange nodes in Figure 2) in the non-streaming algorithm. The main
observation there was that before we see the inflection node (orange node in Figure 2), we could group all the
small valued queries for which the output was ⊥, and treat them as one query, thus paying for them only
once. We could do so because the event that all of those queries being small is equivalent to saying that the
maximum of all the those queries is small. Given two neighbouring datasets, we might have 𝑡 − 1 queries, each
with sensitivity 1, and thus a total sensitivity of 𝑡 − 1, but the max of these queries is still a single query with
sensitivity 1. Thus, we have a single equivalent query that captures the event described by 𝑡 − 1 queries with
output ⊥. A similar reframing also applies to the sketches produced by neighbouring streams. Observe that
despite 𝜅 bins being different in 𝐶 and 𝐶′, the direction in which they are different and the amount by which
they are different is the same for all bins. Thus, we have a guarantee that, if one of the bins in 𝐶 and 𝐶′ is
different, all bins are different, and importantly in the exact same way. There is actually just one degree of
freedom, despite there being 𝜅 different counts to consider. Once one bin differs by one, all bins differ by one
(i.e. the counts are correlated). In the Above threshold (a single invocation of the SVT algorithm), we looked
at the max query, and in this case we can look at any one query (say the first one, which reveals everything
about the other ones). The effect is equivalent. In the proof for Theorem 1 we formally show how we can
handle all 𝜅 counts being different with just one sample of noise, as if we had just a single query.

Remark. Lebeda and Tetek [2023, Lemma 6] make a similar claim to use one sample to cover all bins.
Although the final claim is correct, there is a minor issue in their proof. In their proof, the authors define
the function 𝑔 : R → R𝑘 such that 𝑔(𝑎) = 𝑎1𝑘. Thus, 𝑔−1 (®𝑥) is defined only if all coordinates of ®𝑥 are the
same. Lemma 1 does not guarantee that all the counts are the same, only that two neighbouring differ by the
same amount in the same direction. However, their proof [Lebeda and Tetek, 2023, Line 4, Page 6] relies on
inverting 𝑔−1 (®𝑥) for general 𝑥 ∈ R𝑘, which is undefined. In our analysis, there is no need to define such a
function 𝑔 and we can obtain our results using the above observations.

Algorithm 4 describes our algorithm for computing hierarchical private heavy hitters. First, we compute
noisy heavy hitters at each level of the hierarchy using Algorithm 3. We show that the output of Algorithm 3
is private. Then we conservatively post-process this private output to get our desired result.

Remark. For a fixed level ℓ, Algorithm 3 is very close to [Lebeda and Tetek, 2023, Algorithm 2], with an
essential alteration. In Line 8 of the algorithm, we generate a fresh batch of randomness independent of
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Algorithm 3: Private Release
Data: Data stream 𝑋, Privacy parameters 𝜀 and 𝛿

Result: Privatised MG sketches (MG1, . . . ,MGℎ)
1 Given a dataset 𝑋, construct ℎ sketches (MG1, . . . ,MGℎ) by running Algorithm 2 for each 𝑥 ∈ 𝑋 and

every generalisation of 𝑥.

2 for 𝑙 ∈ [ℎ, ℎ − 1, . . . , 1] do
3 𝛾𝑙 ←$ Laplace( 2ℎ

𝜀
);

4 Let (T𝑙 , 𝐶𝑙) = MG𝑙;
5 for 𝑖 ∈ T𝑙 do
6 𝑤𝑖 ←$ Laplace(4ℎ/𝜀);
7 if 𝐶𝑙 [𝑥] + 𝛾𝑙 + 𝑤𝑖 > 1 + 6ℎ

𝜀
log (3ℎ/𝛿) then

8 𝐶𝑙 [𝑥] = 𝐶𝑙 [𝑥] + Laplace(4ℎ/𝜀) ;
9 else

10 𝐶𝑙 [𝑥] = 0 ;

11 Set MG𝑙 = (T𝑙 , 𝐶𝑙);
12 Output (MG1, . . . ,MGℎ)

thresholding operation to release approximate counts. The reason for this is subtle but immediate when viewing
the algorithm from the lens of the SVT (where this issue is well documented). The construction described
by Lebeda and Tetek [2023] re-uses the thresholding noise and it is therefore not differentially private. The
intuition for this is the following: If we re-use the noise in Lines 7-8, then we reveal partial information about
the global sample 𝛾𝑙 every time we release a noisy count. With every release, we restrict the possible values
𝛾𝑙 could take, thereby shrinking the variance of the privacy distribution. We pay for this shrinkage with a
reduced privacy budget, in that the algorithm is now 𝜀′ private for 𝜀′ > 𝜀. See Appendix B for more details
about how our privacy proof would break if we re-used noise.

Theorem 5.1: Privacy

Algorithm 3 is (𝜀, 𝛿)-DP.

Proof. Fix some level 𝑙. At each level of the tree, we have at most 𝜅 + 1 independent samples from a Laplace
distribution, denoted by 𝑤1, . . . , 𝑤𝜅 and 𝛾𝑙 in Figure 3. We also process each level of the data structure
independently. The resulting output (T𝑙 , 𝐶𝑙) or (T ′

𝑙
, 𝐶′

𝑙
) is in one of two conditions stated in Lemma 1 and as

illustrated in Figure 4. We will use the first 𝜅 independent samples to handle the second condition (Figure
4b), which is essentially the stability histogram problem with Laplace noise and global sensitivity 2.

Case 1. First we need to handle the isolated counters in stability histograms. Remember that in isolated
counter events there is an element 𝑥 ∈ T𝑙 but 𝑥 ∉ T ′

𝑙
, or vice versa. From Lemma 1, as |T ∩ T ′ | ≥ 𝜅 − 2, there

can be at most 2 isolated elements included in the output of the algorithm at any given level 𝑙. Let 𝑎, 𝑏 ∈ T𝑙
denote the possible isolated elements at level 𝑙 after processing 𝑋. If 𝑎 or 𝑏 were to ever show up in the
output, the privacy adversary could perfectly distinguish 𝑋 and 𝑋 ′. For convenience, define 𝜐 = 2ℎ

𝜀
log( 3ℎ

𝛿
).

For 𝑎 to show up in the final output, we need 𝑤𝑎 + 𝛾𝑙 to push the noisy count of 𝑎 over 1 + 3𝜐. Once again
from the tail bounds of the Laplace distribution, we have that the probability Pr[𝑤𝑎 > 2𝜐] ≤ 𝛿

3ℎ . A similar
argument bounds the probability of either of 𝛾 and 𝑤𝑏 exceeding 𝜐 and 2𝜐, respectively. Using the same union
bound across both events, we get with probability at least 1 − 𝛿/ℎ that both 𝑤𝑎 + 𝛾𝑙 ≤ 3𝜐 and 𝑤𝑏 + 𝛾𝑙 ≤ 3𝜐.
For all counters, we add noise drawn from a Laplace distribution, using privacy parameter 𝜀/4ℎ once during
thresholding, and once during public release. Taking the union over the height of the hierarchy, we get that
the first case is handled with (𝜀, 𝛿)-privacy.

Case 2. Next we show that the other case (Figure 4a), where all counters in 𝐶 and 𝐶′ are off by the
same amount in the same direction, is also handled with 𝜀/2ℎ-DP. This is case (2) of Lemma 1, where
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Algorithm 4: Final Algorithm
Data: Data 𝑋, Privacy parameter 𝜀 ∈ (0, log 𝑛), 𝛿 = 𝑜(1/𝑛), Threshold 𝜏 > 0, Confidence Parameter

𝜂 ∈ (0, 1/2)
Result: Approximate Hierarchical Heavy Hitters S and their approximate frequencies

𝑓̃𝑋 (S) = { 𝑓̃𝑋 (𝑝)}𝑝∈S
Parameters :Number of counters 𝜅, Height of hierarchy ℎ.

1 Run Algorithm 3 with input 𝑋, Threshold 𝜏, and privacy parameters (𝜀, 𝛿) to get outputs
(MG1, . . . ,MGℎ) ;

2 Δ1 =

(
1 + 4ℎ log [6ℎ/𝛿 ]

𝜀

)
+ 𝑛

𝜅+1 +
(
8ℎ
𝜀
log [ 2𝜅ℎ

𝜂
]
)

;

3 Δ2 =

(
1 + 4ℎ log [6ℎ/𝛿 ]

𝜀

)
+
(
8ℎ
𝜀
log [ 2𝜅ℎ

𝜂
]
)

;

4 for 𝑙 ∈ [ℎ, ℎ − 1, . . . , 1] do
5 Let (T𝑙 , 𝐶𝑙) = MG𝑙;
6 for 𝑒 ∈ T𝑙 do
7 if 𝐶𝑙 [𝑒] + Δ1 > 𝜏 − Δ1 then
8 S = S ∪ {𝑒};
9 𝑓̃𝑋 (𝑒) = 𝐶𝑙 [𝑒] ; // Noisy Estimate

10 for 𝑝 ∈ Generalise(𝑒) do
11 Let 𝑖 = Level(𝑝);
12 Let (T𝑖 , 𝐶𝑖) = MG𝑖;
13 if 𝑝 ∈ T 𝑖 then

// conservatively remove residual
14 𝐶𝑖 [𝑝] = 𝐶𝑖 [𝑝] − (𝐶𝑙 [𝑒] − Δ2)

15 Output (S, 𝑓̃𝑋 (S))

𝐶 [𝑖] = 𝐶′ [𝑖] − 1 for all 𝑖 ∈ T ′. Remember that our analysis considered the noise in 𝑤1, . . . , 𝑤𝜅 already for
stability histograms. Thus we want 𝛾𝑙 to cover for this other case entirely. Here we use notation 𝑎1𝜅 to
denote the vector [𝑎, 𝑎, . . . , 𝑎] of size 𝜅 for any 𝑎 ∈ R, ®𝑤 succinctly denotes all the 𝑤𝑖’s at level 𝑙. The analysis
below is for any fixed 𝑙 ∈ [ℎ], so we drop the subscript 𝑙 to avoid an overload of notation. We consider any
possible output vector ®𝑦: for a given ®𝑦 and once the noise ®𝑤 is fixed, the only freedom is in the choice of 𝛾.

Pr
®𝑤,𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦] (18)

= Pr
𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦 | ®𝑤] Pr[ ®𝑤] (19)

= Pr[ ®𝑤]
𝜅∏

𝑖=1

Pr
𝛾
[𝐶 [𝑖] + 𝛾 + 𝑤𝑖 = 𝑦𝑖 |𝑤𝑖] (20)

= Pr[ ®𝑤]
𝜅∏

𝑖=1

Pr
𝛾
[(𝐶 [𝑖] − 1) + (1 + 𝛾) = 𝑦𝑖 |𝑤𝑖] (21)

= Pr[ ®𝑤]𝑒𝜀/2ℎ
𝜅∏

𝑖=1

Pr
𝛾
[𝐶′ [𝑖] + 𝛾 = 𝑦𝑖 |𝑤𝑖] (22)

= 𝑒𝜀/2ℎ Pr[ ®𝑤]
𝜅∏

𝑖=1

Pr
𝛾
[𝐶′ [𝑖] + 𝛾 + 𝑤𝑖 = 𝑦𝑖 |𝑤𝑖] (23)

= 𝑒𝜀/2ℎ Pr
𝛾
[𝐶′ + 𝛾1𝜅 + ®𝑤 = ®𝑦 | ®𝑤] Pr[ ®𝑤] (24)

= 𝑒𝜀/2ℎ Pr
®𝑤,𝛾
[𝐶′ + 𝛾1𝜅 + ®𝑤 = ®𝑦] (25)
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Equation (19) comes from Bayes’ Rule. Equation (21) and (22) are the critical steps, where we make the
switch from 𝐶 to 𝐶′ by adding one to 𝛾, using our assumption that 𝐶 [𝑖] = 𝐶′ [𝑖] − 1 for all 𝜅 of the counter
values in T . Meanwhile, we hold the vectors ®𝑦 and ®𝑤 steady, and so the event is the same. We go from
Equation (21) to Equation (22) using the privacy of the Laplace mechanism: the probability of seeing (1 + 𝛾)
instead of 𝛾 is at most a factor of 𝑒𝜖 /2ℎ higher. So despite there being 𝜅 counts, we only have to look at
the dependence on 𝛾. Finally, applying basic composition over ℎ levels of the tree, we get that the entire
algorithm restricted to the scenario depicted in Figure 4a is (𝜀/2, 0)-DP. Hence, regardless of which case we
happen to be in, we obtain that the whole protocol is (𝜀, 𝛿)-DP □

Corollary 1. Algorithm 4 is (𝜀, 𝛿)-DP.

Algorithm 4 is just post-processing the (𝜀, 𝛿)-DP output of Algorithm 3, so by Fact 3 it is also (𝜀, 𝛿)-DP.

Theorem 5.2: Error

For all 𝑝 ∈ S, we have with probability 1 − 𝜂,

| 𝑓̃𝑋 (𝑝) − 𝑓𝑋 (𝑝) | ≤ Δ

where
Δ =

(
1 + 6ℎ log (3ℎ/𝛿)

𝜀

)
+ 𝑛

𝜅 + 1 +
(
8ℎ

𝜀
log

(
2𝜅ℎ

𝜂

))
Proof. Next we state the well known estimation error due to space constraints for the Misra Gries algorithm.
A proof for this lemma can be found in [Bose et al., 2003, Section 2].

Lemma 2 (MG Error). Let 𝐶 [𝑥] denote the frequency estimate for 𝑥 ∈ 𝑋, given by a MG sketch with 𝜅 on
input stream 𝑋. Then 𝐶 [𝑥] ∈

[
𝑓𝑋 (𝑥) − |𝑋 |𝜅+1 , 𝑓𝑋 (𝑥)

]
For any fixed level of the hierarchy, with probability 1 − 𝜂/ℎ we have three sources of error. The first

source of 1 + 6ℎ log (3ℎ/𝛿 )
𝜀

comes from suppressing isolated counts. The second error term 𝑛
𝜅+1 comes from the

error of the deterministic MG counter (Lemma 2). For the third error term, for some 𝛼 to be defined later, at
each level 𝑙 ∈ [ℎ], we want with probability at most 𝜂/2ℎ that |𝛾𝑙 | > 𝛼/2 and with probability at most 𝜂/2ℎ
we want for 𝑖 ∈ [𝜅], |𝑤𝑖 | ≤ 𝛼/2. This guarantees, with probability 1 − 𝜂/ℎ, that max𝑖∈𝜅 |𝑤𝑖 | + |𝛾𝑙 | ≤ 𝛼. Using
the tail bounds of the Laplace distribution, and taking union bounds over all the counters we get

Pr[max
𝑖∈𝜅

𝑤𝑖 > 𝛼/2] ≤ 𝜅𝑒−
𝜀
8ℎ

𝛼

Setting 𝜂/2ℎ = 𝑒−
𝜀
8ℎ

𝛼, we get

𝛼 ≥ 8ℎ

𝜀
log

2𝜅ℎ

𝜂

We can also bound the error from 𝛾𝑙 using a similar analysis, and it turns out the above value for 𝛼 suffices
to bound the error due to 𝛾𝑙. Finally, we take the union bound over all ℎ levels, and get with probability
1 − 𝜂, the total error incurred by any node is at most

Δ =

(
1 + 6ℎ log (3ℎ/𝛿)

𝜀

)
+ 𝑛

𝜅 + 1 +
(
8ℎ

𝜀
log

(
2𝜅ℎ

𝜂

))
□

We note that the dependence on ℎ here is not optimal. We have used basic composition to show a linear
dependence on ℎ, in order to keep the development clear. However, it is possible to show an improved
dependence on

√
ℎ, by invoking more advanced composition theorems Dwork et al. [2014], Bun and Steinke

[2016]. Since we assume that ℎ is relatively small in practice, we don’t expand on this point in this presentation.
Note that as we cannot avoid the composition error due to the height of the hierarchy, we can directly
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estimate the unconditional frequencies of a node 𝑝 by looking at the noisy count of 𝐶Level(𝑝) [𝑝]. However,
this means that there is no advantage to reporting relative error guarantees instead of the absolute error in
the streaming case: all prefixes incur noise of the same magnitude. We leave it open to show whether this
gap is provably unavoidable or can be surmounted using different techniques.

Theorem 5.3: Coverage

For all 𝑝 ∉ S, with probability 1 − 𝜂, 𝐹S (𝑝) ≤ 𝜏 − Δ.

Proof. Let S denote the output of Algorithm 4. Fix 𝑝 ∈ S, define A𝑝 = {ℎ ∈ S : ℎ ≻ 𝑝 ∧ �ℎ′ s.t ℎ ≺ ℎ′ ≺ 𝑝}.
Let 𝑠𝑝 denote the amount of weight removed from the unconditional count of 𝑝 in step 14 of Algorithm 4 for
prefix 𝑝. Note that 𝑠𝑝 ≤

∑
ℎ∈A𝑝

𝑓𝑋 (ℎ) by definition, as MG counts cannot ever overestimate 𝑓𝑋 (𝑒). We need
to account any overestimation due to differential privacy. With probability 1 − 𝜂, we have that the noise
per node due to DP is Δ2. Thus, with probability 1 − 𝜂, 𝐶𝑙 [𝑒] − Δ2 in Line 14 is strictly less than 𝑓𝑋 (𝑒) (as
we have removed the DP contribution and 𝐶𝑙 [𝑒] ≤ 𝑓𝑋 (𝑒)). So we always take off less than we could from
the count of 𝑝. Any prefix 𝑝 is included in S only if 𝐶𝑙 [𝑝] + Δ1 > 𝜏 − Δ1. So for all 𝑝 ∉ S, we must have
𝐶𝑙 [𝑝] + Δ1 − 𝑠𝑝 ≤ 𝜏 − Δ1. Therefore, with probability 1 − 𝜂,

𝐹S (𝑝) = 𝑓𝑋 (𝑝) −
∑︁

ℎ∈A𝑝

𝑓𝑋 (ℎ) (26)

≤ (𝐶𝑙 [𝑝] + Δ1) − 𝑠𝑝 (27)
≤ 𝜏 − Δ1 (28)

Equation (26) comes from the definition of residual count. Equation (27) comes from the fact that
𝑠𝑝 ≤

∑
ℎ∈A𝑝

𝑓𝑋 (ℎ), and 𝑓𝑋 (𝑝) ≤ 𝐶𝑙 [𝑝] + Δ1 with probability 1 − 𝜂 (from Theorem 2). □
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A Composition And Structure

Differential Privacy was initially motivated by the study of counting queries, and heavy hitter estimation
can be seen as post processing of private release of counting queries. The privacy community has studied
extensively the composition of privacy parameters when dealing with arbitrary counting queries. From
basic composition we know that the maximum DP error of 𝑞 invocations of the Laplace mechanism scales
𝑂 (1/𝜀 · 𝑞 log [𝑞]). Steinke and Ullman [2015] show that we can save the log 𝑞 factor by exploiting the
structure of correlated noise used for DP, and have error scale by 𝑂 (𝑞/𝜀). Of course we could also use
advanced composition [Dwork et al., 2010] on top of this to further reduce the error to 𝑂

(
1/𝜀 ·

√︁
𝑞 log [1/𝛿]

)
.

Kairouz et al. [2015] show an exact characterisation of the best privacy parameters that can be guaranteed
when composing many (𝜀, 𝛿)-differentially private mechanisms. Unfortunately computing these parameters
for arbitrary queries with different privacy parameters is #P-complete [Murtagh and Vadhan, 2015]. While
the early work was focused on arbitrary counting queries, there has been considerable work in exploiting
structure in queries to obtain better error than basic or advanced composition. Dwork et al. [2009] proposed
the Above Threshold algorithm and showed that one can group similar queries together, and replace them
with a single query to pay for many queries just once. This insight has led to multiple constructions of highly
accurate DP algorithms that would have been impractical if we considered basic or advanced composition
[Chen and Machanavajjhala, 2015, Bun et al., 2017, Dwork et al., 2015, Nissim et al., 2016]. Kaplan et al.
[2021] identified that for certain distribution of queries, the composition of the above threshold algorithm
could be further improved, by observing that not all large queries include the neighbouring element. Dong
et al. [2023] show how to bypass composition for special class of conjunctive queries. We direct the reader to
the chapter by Steinke [2022] for a detailed survey on the role of composition in differential privacy. Despite
an enormous body of work on counting queries and composition, the question of hierarchical counting with
privacy has remained unexplored. In this work, we show that one can use similar tricks to the above work to
exploit the structure of a hierarchy, and get highly accurate algorithms, that are not possible with general
purpose techniques.

B A Note About Re-using Random Samples

In this section we describe how the privacy proof analysis breaks down if re-use the same random samples for
thresholding, and outputting the counts. Borrowing notation from the proof of Theorem 1, if we used fresh
randomness then can go from Equation (30) to Equation (31) without any issues. The noisy released count
of 𝐶 [𝑖] is independent of the thresholding operation, and the proof holds.

Pr
®𝑤,𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦] (29)

= Pr
𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦 | ®𝑤] Pr[ ®𝑤] (30)

= Pr[ ®𝑤]
𝜅∏

𝑖=1

Pr
𝛾
[𝐶 [𝑖] + 𝛾 + 𝑤𝑖 = 𝑦𝑖 |𝑤𝑖] (31)

On the other hand if we reused noise, then the Equation (31) has further constraints. Consider the event
that all noisy counters are above the threshold (this is the worst case, where we reveal maximal information
about 𝛾), and let 𝑋𝑖 = 𝐶 [𝑖] + 𝛾 + 𝑤𝑖 for 𝑖 ∈ [𝜅] . Then assuming we release counts in lexicographical order, we
have,

Pr
®𝑤,𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦] (32)

= Pr
𝛾
[𝐶 + 𝛾1𝜅 + ®𝑤 = ®𝑦 | ®𝑤] Pr[ ®𝑤] (33)

= Pr[ ®𝑤]
𝜅∏

𝑖=1

Pr
𝛾

[
𝑋𝑖 = 𝑦𝑖 | ®𝑤 ∧ 𝑗<𝑖 𝑋 𝑗 = �𝐶 [ 𝑗] ∧ 𝑗<𝑖 𝑋 𝑗 ≥ 𝜏

]
(34)
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Each release of a noisy count, puts a condition on the possible values of 𝛾. Now we are no longer able
to just use the pdf of the Laplace distribution to upper bound the ratios like we did in our proof. Another
way to think about the issue is that we release information. Once via the threshold, and then again with
noisy count. Once the privacy adversary sees a noisy threshold, it gains information about the value of 𝛾,
and we can no longer use one sample to cover for all bins. More simply put, it violates composition bounds,
as two releases require two batches of randomness to cover this leakage. Viewing the same algorithm with
the SVT lens, Lyu et al. [2016, Page 5, Algorithm 3] argue how not using a fresh batch of randomness is
not differentially private by showing how a constraint on the value of 𝛾 needs to be ignored to complete the
privacy proof (equation 11 on Page 5). This issue was originally pointed out by Zhang et al. [2016, Appendix
A] where they show that re-using randomness puts additional constraints on the support of the randomness,
which results in the variance of the privacy distribution to shrink. To make up for this shrinkage, they show
that the scale of the noise distribution would need to be linear with the number of queries. This destroys any
benefit to using SVT in the first place.
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