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1 Problem 1

The game in matrix form

Player II
2→ 4 2→ 3→ 4

Player I

1→ 4 3, 4 3, 3
1→ 3→ 4 2, 4 3, 4

The potential of a strategy p is defined as

Φ (p) =
∑
e∈E

ne(p)∑
i=1

ce (i) (1)

where ne (p) represents the number of players that play edge e when the overall strategy of play is p. So the
4 squares below iterate all possible strategies, and for each strategy, we add up the costs as per the definition
above.

Player II
2→ 4 2→ 3→ 4

Player I

1→ 4 3+4 = 7 3 + (1 + 2) = 6
1→ 3→ 4 (1+1)+4 = 6 1 + 2 + (1+2) = 6

Notice that last (1+2) in the bottom right cell. That happens because two players use the edge 3→ 4, and
thus we have to account for it when c3→4 (1) + c3→4 (2) = 3.

There are 3 pure Nash equilibria, those that have potential 6. The PoA is 7/6.

2 Problem 2

Upper Bound For this problem, we first re-derive the POA for linear cost functions ( and fill in some
missing details from the slides). Make sure you fully understand all the steps in this proof. If you do, then
the rest follows with some algebra magic (shown at the end). The first piece of magic we need is the following
mathematical fact.

Fact 1 For any x, y ∈ N, we have 3(x+ 1)y ≤ x2 + 5y2.
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Let ce (x) = αex+ βe be the linear cost function for some non-negative αe, βe for each edge e ∈ E, where E

represent all edges in the network. Let p = p1, . . . , pn denote the player actions in the NE, where pj is the
path from source to target chosen by player j ∈ N . Similarly, let p? = p?1, . . . , p

?
n be the optimal strategy

which minimises overall cost. Let ne (p) denote the number of players that take edge e when we are playing
with strategy p. Thus, the total cost of playing strategy p is

∑
i∈N

Ci(p) =
∑
i∈N

∑
e∈pi

ce (ne (p)) (2)

=
∑
e∈E

ce (ne (p)) · ne (p) (3)

(4)

Now the cost for player i ∈ N , when everyone plays the NE, is the cost of the edges it traverses in is path pi.

Ci(p) =
∑
e∈pi

ce (ne (p)) (5)

≤
∑
e∈p?

i

ce (ne (p−i; p
?
i )) (6)

≤
∑
e∈p?

i

ce (ne (p) + 1) (7)

(6): Player i changes from from pi to p?i , but as p is NE, it cannot improve it’s cost. (7): By switiching to p?i
player i can add at most 1 to every edge. Combining (2) with (7), we get

∑
i∈N

Ci(p) ≤
∑
i∈N

∑
e∈p?

i

ce (ne (p) + 1) (8)

=
∑
e∈E

ce (ne (p) + 1) · ne (p?) (9)

≤
∑
e∈E

1

3
ce (ne (p))ne (p) +

5

3
ce (ne (p?))ne (p?) (10)

=
1

3

∑
e∈E

ce (ne (p))ne (p) +
5

3

∑
e∈E

ce (ne (p?))ne (p?) (11)

≤ 1

3

∑
i∈N

Ci(p) +
5

3

∑
i∈N

Ci(p
?) (12)

Finally, we get

∑
i∈N Ci(p)∑
i∈N Ci(p?)

≤
5
3

1− 1
3

=
5

2

(10) follows from the derivation shown below. Let x = ne (p) and y = ne (p?).
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ce (ne (p) + 1) · ne (p?) = ce (x+ 1) y (13)

= (αe(x+ 1) + βe)y (14)

= αe(x+ 1)y + βey (15)

≤ αe

[1

3
x2 +

5

3
y2
]

+ βey (16)

=
[1

3
αexx+

5

3
αeyy

]
+ βey (17)

≤ 1

3
αe(x+

βe
αe

)x+
5

3
αeyy + βey (18)

=
1

3
αe(x+ βe)x+

5

3
y(αey + βe) (19)

=
1

3
ce (x)x+

5

3
ce (y) y (20)

(24) comes from Fact 1. In a sense, all the work for this proof happened in expanding (10), and the expansion
really relies on Fact 1. So the whole game again for the new cost function ce (x) = ae(x+ 1) + be will be to
come with a mathematical lemma such that I can take a product of two terms and split it into the sums.

Fact 2 Let g(x) = x+ 1, then g(x+ 1)y ≤ 1
4g(x) · x+ 5

4g(y) · y.

You can take Fact 2 and substitute Equation (12) with 1
4 and 5

4 instead of 1
3 and 5

3 , respectively.

ce (ne (p) + 1) · ne (p?) = ce (x+ 1) y (21)

= (αe(x+ 1 + 1) + βe)y (22)

= αeg(x+ 1)y + βey (23)

≤ αe

[1

4
xg(x) +

5

4
yg(y)

]
+ βey (24)

=
[1

4
αexg(x) +

5

4
αeyg(y)

]
+ βey (25)

≤ 1

4
αe(x+ 1 +

βe
αe

)x+
5

4
αey(y + 1) +

5

4
βey (26)

=
1

4
x(αe(x+ 1) + βe) +

5

4
y[αe(y + 1) + βe] (27)

=
1

4
ce (x)x+

5

4
ce (y) y (28)

The POA

∑
i∈N Ci(p)∑
i∈N Ci(p?)

≤
5
4

1− 1
4

=
5

3

Remark 1 Verifying Fact 2 and Fact 1 is quite easy once I tell you what the constants are. Just
start with small values for x and y and check it holds. As the RHS grows much faster than the
LHS as you increase x and y, if the check holds for small values, it must hold for large values.

For the lower bound, we just need one example of a cost function to match the upper bound. The figure
below achieves this (This is the same game as the slides lower bound)
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Figure 1: Change the right parallel edges to c(k) = 2k, in the original problem in the slides. The new cost
function becomes 2(k + 1) for the right paths and k + 1 for the left paths. For OPT travel time per player,
notice each payable edge is used once. So we get 2(1 + 1) + (1 + 1) = 6, and for the NE per player, we have
the player i uses player i+ 1 mod 3 and i+ 2 mod 3 left edges, and the right edges get used once per player.
So (2 + 1) + (2 + 1) + 2(1 + 1) = 10.

3 Problem 3

Want to show that.

L(x)y ≤ 1

4
L(x)x+ L(y)y (29)

L(x) ≤ x

4y
L(x) + L(y) (30)

L(x)(1− x

4y
) ≤ L(y) (31)

If y = 0, the whole thing is trivial, so assume without loss of generality y 6= 0. When y ≥ x, as L is
non-negative and non-decreasing, we have L(x) ≤ L(y), and therefore yL(x) ≤ yL(y) ≤ yL(y) + 1

4L(x)x,
as x, y are non-negative and so is L(x). Similarly, if y ≤ x

4 , L(x)y ≤ x
4L(x) + yL(y), as y and L(y) are

non-negative.

This leaves us the case that x
4 ≤ y ≤ x, we will use the fact L is concave. A function f is concave if for any

u, v in the function’s domain, and α ∈ [0, 1]

f(αu+ (1− α)v) ≥ αf(u) + (1− α)f(v)

Setting L = f , u = 0, v = x and α = x
4y ∈ [0, 1], we get
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x

4y
L(0) + (1− x

4y
)L(x) ≤ L((1− x

4y
)x) (32)

x

4y
L(0) + (1− x

4y
)L(x) ≤ L(y) (33)

L(x)(1− x

4y
) ≤ L(y) (34)

(33) comes from the fact that L is non-decreasing, and (x− x2

4y ) ≤ y. In equation (34), as we know y 6= 0 and
L and x are non-negative, we are only making the LHS smaller by removing a non-negative quantity.

To see why (x− x2

4y ) ≤ y, observer

x(1− x

4y
) ≤ y (35)

x(4y − x) ≤ 4y2 (36)

4y2 + x2 − 2 · 2y · x ≥ 0 (37)

(x− 2y)2 ≥ 0 (38)

As x, y ∈ [0,∞), the square of (x − 2y) must be non-negative. Once you prove this quantity, the proof
that the POA is upper bound is identical to the material in the slides. Instead of using xy ≤ 1

4x
2 + y2 for

x, y ∈ R+, we substitute ce (·), with L and use equation (34).

4 Problem 4

Player II
2→ 3 2→ 1→ 3

Player I

1→ 3 4 a+ 2

1→ 2→ 3 a+ 2 a+ 4

So the optimal strategy is 1→ 3, 2→ 3 if a > 2, and 1→ 3, 2→ 1→ 3 is optimal if 1 ≤ a ≤ 2.

For a > 1, NE has social cost 4. For a ≤ 1,the optimal solution is a NE.

PoS =

{
4

2+a , for 1 < a < 2

1 otherwise
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