Problem 5 Given two multi-sets of votes V and V over the some candidate set, let $d_{M}(u, v)$ bethe min number of votes that reed to be added or deleted from u to transform it into v. Argue that $d_{M}($,$) is a distance metric.$

- Reflexivity: $d_{M}(u, u)=0$ By deft, dost need to do anything to change u to u.
- Positivity: $d_{M}(u, v)>0$ if $u \neq v$ (similar reason g)
- Δ inequality: Tres form $u \rightarrow w$ men transform $w \rightarrow v$.

$$
\therefore d(u, v) \leqslant d(u, w)+d(w, v)
$$

(Either W is the shortest kesstometion
from u to v, then equality or
w is a long winded tran formation
so more work then needed)

- Symmetry: $d_{M}(u, v)=x+y$
x deletions y insertions

$$
\begin{aligned}
d_{M}(v, u) & =x+y \downarrow^{\text {switch order }} \\
& =x \text { insertions } y \text { deletions } \\
\therefore d_{M} & (u, v)=d_{M}(v, u)
\end{aligned}
$$

Given a profile R, let $\tilde{M}(a)$ be the min number of voters that con be added to R to make a condorcet winner.
Argue that for any $a, b \in C$ we have

$$
m(a)<m(b) \Leftrightarrow \tilde{M}(a)>\tilde{M}(b)
$$

where $m(a)$: Maxmin score of a.
\longrightarrow This is jut the A times a beets their toughest rival (one who beats them the mast times)

$$
m(a)=\min _{b \in c \backslash\{a\}}\left|\left\{v_{i} \in R: a \succcurlyeq b\right\}\right|
$$

Son. Fact: Adding $\tilde{M}(a)=n-2 m(a)+1$ voters whorerk a first ensures a is a condorcet winner.

$$
\text { Why? Observe } N=n+n-2 m(a)+1=2 n-2 m(a)+1 \text {. }
$$

Prior to this addition α was beating every other player by at least $m(a)$ votes in a head to heed. Now a beats every player by at least: $m(a)+n-2 m(a)+1=\frac{N+1}{2}$ votes.

Now if $M(a)<M(b) \Rightarrow n-2 m(a)+1<n-2 m(b)+1$

$$
\therefore m(b)<m(a) \text {. }
$$

if $m(a)>m(b) \Rightarrow M(b)>M(a) \quad[$ just ply in above equations]

But even when a is a condorcet winner but b is NoT; it follows trivially:

$$
\begin{aligned}
& M(a)=0 \\
& M(b)>0 \quad \therefore \quad M(a)<M(b)
\end{aligned}
$$

We have $n-m(\alpha)<\frac{n+1}{2}[a s a$ is a condorcet winner $]$
$n-m(b)>\frac{n+1}{2}[b$ is NOT a c.w so some player best b

$$
>(n+1) / 2 \quad \text { times }]
$$

$$
\therefore n-m(\alpha)<n-m(b) \text { or } m(b)<m(a) \text { ! }
$$

Use the results of the previous parts to provide a distance rationalization of the maxmin rule wort to the condorcet consensus.

This is a lot of fancy words to saying the following. You are given some multiset U and a scoring rule $R: C \times V \rightarrow \mathbb{R}_{1}$. Ir this case the scoring rule is maximin.

You want to find a class of profiles (such as profiles w/ condorcet winner) and some distance metric on profiles sit the following process yields the some winner as $R(U)$.

$$
\left\{\operatorname{Cond} \text { winner }\left(v^{*}\right): v^{*}=\underset{v \in \underset{\substack{* \\ \text { cis } \\ \text { only itorecte through } \\ \text { condorcet winger } \\ \text { profiles. }}}{ } d(u, v)\}}{ }\right.
$$

Now giver a profile $V, \alpha \in C$ is maxmin winner
Then if $V \in C L S$ So α will be the winier of argmir process.

and α is
cord winner
at V

Now suppose α is not a condorcet wirer $@ V$.
To make α a condorcet winner we con find profile V^{1} by adding $\underbrace{n-2 m(a)+1}_{\hat{M}(\alpha)}$ voters who
rank α as top to V; where n is num voters in V.

Now suppose there is another candidate β that is not maximin winner @ $V(s 0 m(b)<m(a))$ but we car add $\tilde{M}(b)$ votes to mene β cord winner.
By result above we have $\tilde{M}(b)>\tilde{M}(\alpha)$ since s $m(b)<m(o)$.
Therefore the profile $V^{\prime \prime}$ you get to make b a winier is further away from V^{\prime} i.e $d_{M}\left(V, V^{\prime}\right)<d_{M}\left(V, V^{\prime \prime}\right)$.
So the min process will always pick α as cord winner!

Why did we use multi-sets instead of profiles.
It mokes the diff of distance move painful.
Have to account for order of deletions and insertions.

Why use both insertions and deletions to defined $d M$?

* Makes symmetry easier when one set $U \subseteq W$.
* could use orly insertions but charge
the defer of dm to min votes I reed to add
to both $U \& W$ to make the some.
* a bit more painful.!

PROBLEM 3 show that when num voters is odd and V is single peaked on a tree $T=(C, E)$; then we always hove a condorcet winner.

ASIDE: See posted notes on what it means to be single peaked on a tree?! Here by tree we mean an undirected, connected graph without any cycles.

Now take your tree and convert it into a DAG. $G=\left(C, E^{\prime}\right)$
That is
For any $a, b \in C$ we have $a \mapsto b \in E^{\prime} \Leftrightarrow(a, b) \in E$ ard a beats b by original twa a majority of notes.

As original tree didn't have cycles, we know that the DAG con't have cycles. So we have a node $c \in G$ that is a source node. We claim the c is a conolorret winner

For any $d \in C \backslash\{c\}$; if $c \rightarrow d$ ie d is a direct nor of c; the c beats d head to
head. For d that is rot a nor of c we have $c \rightarrow x \rightarrow \cdots \cdot d$.
But if $c \rightarrow x$ then we must have $x y_{\text {maj }} d$, so $\left.c\right\rangle_{\text {maj }}$ d
\checkmark
Why? Assume you have,

$$
c \rightarrow x<b
$$

ie $C y_{\text {mamuib }}{ }^{2}$ and $\left.b\right\rangle_{\text {maj }} x$; then this breaks single-pechednen.
move then half the
people prefer c over x.
By single peovedrem
They carrot prefer b over x as b is
further away from c than x which is their most preferred out of the 3 .

Problem $2 \quad P=\left(v_{1} \ldots v_{n}\right)$ all votes ere distinct.
Argue there are at most 2 ways to make P single crossing?
Soln: If there is no way to permute P then we win.
Assume then is a permutation of P and denote it an $\left(v_{1}, v_{2} \ldots v_{n}\right)$ that is single crossing.

Then $\left(v_{n}, \ldots v_{1}\right)$ is also single crossing?
We elaim that these are the only two ways to make it single crossing.
Proof by induction

Base case: $n \leq 2$. $\left(v_{1}, v_{2}\right)$ and $\left(v_{2}, v_{1}\right)$ are the only permutations! Done.

Induction Hypothesis: Assure for size n-1; then are at root 2 ways to make single crossing profiles.

Incluetion step: Let $P=\left(v_{1} \ldots v_{n}\right)$; As all v_{i} 's avo distinct $V_{1} \neq V_{2}$ ie $\exists \alpha, \beta$ where $\alpha \geq 1$ and $\alpha<\beta$. But as P is single crossing for $j \geq 2$ we must have $\alpha<\beta$ oiharwiu α, β cross again. So V_{1} must be at the extremes of arg valid ordering.
So my options are $v_{1} \ldots v_{n} \#$
$v_{n} \ldots v_{1} \# \#$

* $\left.v_{1} v_{n} \ldots v_{2}\right\}$ lent to show that ** $\left.v_{2} \ldots . v_{n} v_{1}\right\}$ these acre not single Now as P is in single evossing; $s 0$ is crossing $\vec{P}=\left(v_{2}, v_{2} \ldots v_{n}\right)$, and there are 2 ways at root to roche p^{\prime} single cussing (by induction hypothesis)
Since $v_{2} \neq v_{n} \exists c, d$ sit $c \succ_{2} d$ and $d \zeta_{n} c$.
If P were to be single crossing then we need.
$C \succ_{1} d$ (otherwise \# and \#\# are rot single avowing and we assured \# vacs single ")

But if $C t_{1} d$ then c and d cross over twice in

$$
\begin{aligned}
& v_{2} \ldots v_{n} \vec{v}_{1} \text { and } \\
& {\underset{v}{1}}^{v_{n} \ldots . v_{2}}
\end{aligned}
$$

So these perms comot be single crossing.

Problem 1 Prove that every $P=\left(v \ldots . v_{n}\right)$ over m cordidetes is single peeked wort to atrost 2^{m-1} ares
P is single pecked w.rt. some axis Δ if every $v_{i} \in P$ is single peeked wort to Δ. Thus show that \exists some v_{i} st v_{i} is single peeked w.r.t at most 2^{m-1} axes.

By induction.
$m=1$. Only one way to rank eardidetes and be SP.

$$
2^{1-1}=1
$$

Induction Hypothesis: For $m-1$; there are 2^{m-1} axes $\Delta_{1}, \ldots \Delta_{2^{m-1-1}}$
Induction step: Pick some voter ranking vi

$$
v_{i}=\alpha>b \ldots>m
$$

Create v^{\prime}, by aleleting m.
v_{i} is a ranking over 2^{m-1-1} axes.
if I put m ot the extreme left for any $\Delta_{j} j \in\left[2^{m-2}\right]$ $m ん \Delta_{j}$ is also single peaked.
similarly placing it on the extreme right also mokes Vi SP wort dj< om.

Thus 2 ways to extend each $厶_{j}$.

$$
\text { Total }=2 \cdot 2^{m-1-1}=\alpha^{m-1}
$$

