Algorithmic Foundations of Collective Decision Making: Tutorial 2

1. Consider the symmetric additively separable hedonic game (N, u) with $N=$ $\left\{a_{i}: 1 \leq i \leq 4\right\}$ and utilities given by the figure below, where $\alpha \in \mathbb{R}$ is a parameter.

Let $\pi=\left\{\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{4}\right\}\right\}$
Consider the coalition structure $\mathfrak{C}=\left\{\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{4}\right\}\right\}$. Determine for which values of α the coalition structure \mathfrak{C} is

- individually rational,
- Nash stable,

$$
\begin{aligned}
& u_{1}(\pi)=u_{1}(2)+u_{2}(3)=a-1 \\
& u_{2}(\pi)=u_{2}(1)+u_{2}(3)=4+a \\
& u_{3}(\pi)=u_{3}(1)+u_{3}(2)=3 \\
& u_{4}(\pi)=0
\end{aligned}
$$

For π to individually rational we reed.
$a-1 \geq 0$ So 1 is at least as good as being alone
$a \geq 1$.
\rightarrow This also handles 2's care which needed $a \geq-4$

So we hove $\alpha \geq 1$ for π to be $1 R$.

For π to be nash stable we went to stop
a_{1} from joining a_{4}; which would give a_{1} a utility of 2 .

$$
\therefore 2 \leq a-1 \text { or } \alpha \geq 3 *
$$

But to stop au from joining the rest of them we need

$$
\begin{aligned}
& \text { we need } \\
& \text { utility ar } a-1<0 \text { or } \mid \alpha<1<1
\end{aligned}
$$

 There is No 2 for which T1 is Nash stable.

For π to be in the core we need to rule out blocking coalitions.
$\left\{a_{1} a_{4}\right\}$ is blocking for $\alpha<3$. To see rusty 6 ans utility under π
a_{1} 's utility under $2>\alpha-1 \Rightarrow a \leq 3$ ned to be non blocking au's utility" $2>0 \quad a_{4}$'s utility under π
$\left\{a_{1}, a_{2}, a_{4}\right\}$ is blocking for $\alpha>4$

$$
a_{2}^{\prime} \text { s ald ulitily }
$$

a_{2}^{\prime} 's new ulity $2 \alpha>4+\alpha$.
\Rightarrow need $\alpha \leq 4$ to be non blocking
$3 \leq 2 \leq 4 \Rightarrow \pi$ is in the core
2. Prove the following theorem stated in the lecture: Every symmetric ASHG admiss a Nash stable coalition structure.

Let π^{*} be the coalition structure that maximises social, welfare. Then we will show that π^{*} is nosh stable. $\sum_{i \in N} u_{i}(\pi)=\operatorname{SW}(\pi)$
Let π^{\prime} be the coalition structure formed by player i moving.

Let $\pi^{*}=\left\{s_{1}, \ldots s_{m}\right\}$. Without loss of generality assume

Now $u_{j}\left(s_{1}\right)=u_{j}(i)+u_{j}\left(s_{1} \backslash श ; 3\right)$ for any $j \in s_{1} \backslash\{i\} \rightarrow$ plug into $\#$

(3)

3. Construct a symmetric additively separable hedonic game whose core is empty.

Think of what this statement really means?
"I can come up with a network such that no one ever wants to stay
in any relationship"

First relax this reed for the undirected/symetry. Is this problem then easy? What comes to your mind when you reed the bit in blue?

This game shows up in hollywood movies, novels, college campuses. It's everywhere! Answer: A LOVE Triangle.

(2) But they'd rather be with someone then alone.
(3) They have a cyclic love!

Alice lues Bub move then Chorthe Bob loves Charlie move than Alice Chalice been Alice move than Bob!
\downarrow Expressed just a hedonic gave; this work.
\rightarrow But fails for additive
games.

Now this doesn'l work!
I had the right idea but
this graph is too rigid.
Not enough ways to
label things

Lift up! Anal more players.

Make new world when
$\rightarrow 4$ man relationship is AWFUL
$\rightarrow 3$ man better then 2 better thorn 1
\rightarrow Use love Δ ilea

Observe : No one wants to be alone.

Any coalition of 2 is blocked by some coalition of size

- $A B, B C$	blocked by $A B C$
- $C D, D E$	$"$
- $A F, F E$	"
$A C, C E, A E$	"
	$A F E$

- No coalition ≥ 4 is in cove!

No coalition of 3 is in cove $A B C$ blocked by $C E P$ * c gets 9 * DE set $-\infty$

Similarly,
CED blochad $\triangle F E$ \searrow
beta off

AFE blocked ty $A B C$.

4. Consider an instance \mathcal{I} of the stable matching problem such that when we execute the Gale-Shapley algorithm on \mathcal{I} with men as the proposing side and when we execute it with women as the proposing side, we get the same matching, which we will denote by S.
Prove or disprove the following statements:
(a) There exists a unique stable matching for \mathcal{I}.
(b) At least one person receives their top choice in S.

The first claim is tune!
Let S be the output of Gale shapley regardless of which group proposes.

Let $(x, w) \in S$. Then x is w's best and worst valid partner.
Likewise w is x^{\prime} " " " "
(Since S is the output regenselites of men proposing
or women proposing)

If you have more then 1 stable matching,
Then there carrot be a pair that is both best and worst!
For example: Assume $\Theta_{2} \neq S$.
$(x, \omega) \in S \quad$ if ω is best partner, then w will be worst.

$$
\left(x, w^{\prime}\right) \in \underbrace{S_{2}}_{\substack{\text { Anthe stable } \\ \text { matching }}} \text { but }\left(x, w^{\prime}\right) \notin 8 \text { when men are rejectores. }
$$

(1) Fix desired outcome
(2) Ploy one side making sure each player gets knocked out once

A	x	w	y	F
B	y	x	F	E
C	x	y	E	E
D	z			
D	y	z	x	w

W	D	A	FREE	
X	D	B	C	A
y	A	C	D	B
3	C	D	$F R E$	

(1) C reeds to brock A; (3) B knock C
(2) D reeds to knock B
(4) C krokks D

$$
\begin{aligned}
& \text { (b) Try and set each player so } \\
& \text { they get II pret }
\end{aligned}
$$

$$
\begin{aligned}
& A-D \\
& \text { proposing : } A x, B y, d x, D y, \Delta w, \\
& B x, C y, D z
\end{aligned}
$$

- x knocks w.
N-z

$$
\frac{-t}{\text { proposing }} \quad \chi_{D}, y_{0}, y_{A}, \notin c, w A, x, z D, x B
$$

- w knocks y

$$
\text { - y krocluz } 3
$$

$$
\text { - } 3 \text { knock } x
$$

5. Suppose the Gale-Shapley algorithm outputs a matching S on instance \mathcal{I}. Consider a subset of men $M^{\prime} \subseteq M$, and modify \mathcal{I} so that for each man $m \in M^{\prime}$ his top-ranked woman in the new instance is the woman he is matched to in S (and otherwise their rankings over women are arbitrary); the preferences of the men in $M \backslash M^{\prime}$ remain unchanged. Denote the modified instance by \mathcal{I}^{\prime}. Argue that the Gale-Shapley algorithm outpus S on \mathcal{I}^{\prime} as well.

