1. Prove that deciding if a given player in a weighted voting game is a null player in coNP-complete.

We are given a weighted voting game $G = \left[(w_1, \dots, w_n), K \right]$ and some it [n] and asked to show that the obscision problem [is i a dummy player in G #

Player i is NOT dummy if
$$\exists 3 \subseteq [M \setminus 2i]$$

S is losing?
 $\sum_{x \in S} W_x \times \sum_{x \in S} W_x + Wi - *$
Suzij is winning

If someone gove us S (think of Sas a witness); then we can check to in linear time in r. So we have a short proof. ## in NP.

Given an instance of PARTITION

we set up a weighted roting gorere Wi=ai ViE[n] ond set the quota of Wate = 1 Wate = 1 He gore to be k+1

The VERTEX COVER problem is given by an undirected graph G = (V, E) and a positive integer k. A pair (G, k) is a yes-instance if G admits a vertex cover of size k, i.e., a subset of vertices S ⊆ V with |S| = k such that for each edge {u, v} ∈ E we have u ∈ S or v ∈ S.

Consider the following mapping from an instance of VERTEX COVER to a vector weighted voting game. Given an instance with n vertices and m edges, we construct a game with n players $1, \ldots, n$ that is a conjunction of m weighted voting games, one per edge. For each edge $e = \{u, v\}$ the game G^e has quota 1; the weights of players u and v are 1, and the weights of all other players are 0. Use this construction to prove NP-hardness of the following decision problem (you may need to modify the basic construction to do this, e.g., by adding extra games or changing weights).

Given a vector weighted voting game that is a conjunction of t weighted voting games $G^1 \wedge \cdots \wedge G^t$, is the game G^t relevant, i.e., is it the case that $G^1 \wedge \cdots \wedge G^{t-1}$ and $G^1 \wedge \cdots \wedge G^t$ do not have the same set of winning coalitions?

Now define G^{*} as a weighted voting gome with [V]
players where
$$Wi=1$$
 ViE [n]; and quota k+1
from the
Want to show if
(Gr, k) E Vertex (over (=) G^{*} is relevant
to G

But 3 mins G as 8 has a node that touches every edge (by vertex cover property); so for every genre G^e if will win as UES sit e = (4, u) or (u, *).

3. Consider two simple games $G^1 = (A, v^1)$ and $G^2 = (A, v^2)$ with the same set of players A. Suppose that a player $i \in A$ is not a null player in both games. Can we conclude that i is not a null player in the game $G^{\cap} = (A, v^{\cap})$, with the characteristic function v^{\cap} given by $v^{\cap}(C) = \min\{v^1(C), v^2(C)\}$? What about the game $G^{\cup} = (A, v^{\cup})$, where v^{\cup} is given by $v^{\cup}(C) = \max\{v^1(C), v^2(C)\}$?

٨

-: Adding 1 to {3} changes volve. 1 is NOT DUMMY inv? -: Adding 1 to {2} ". 1 is NOT DUMMY in v?.

4. Prove that any outcome in the core maximizes the social welfare, i.e., for any coalitional game G it holds that if (CS, \mathbf{x}) is in the core of G = (N, v) then for any coalition structure CS' for G we have $\sum_{C \in CS} v(C) \ge \sum_{C' \in CS'} v(C')$.

Assume that the statement is folse.

$$\exists \widetilde{CS} \quad s.t \qquad \sum \quad v(s) \quad \zeta \quad \sum \quad v(\widetilde{S}) \\ gecs \qquad \widetilde{S} \notin \widetilde{CS} \\ \end{cases}$$

$$Y = \sum_{\widetilde{C}} \quad x(\widetilde{S}) \stackrel{()}{=} \sum_{i \in [n]} \quad x_i \stackrel{(i)}{=} \sum \quad v(s) \quad \zeta \quad \sum \quad v(\widetilde{S}) \quad \zeta \quad \sum \quad x(\widetilde{S}) \\ \underset{i \in [n]}{\cong} \quad gecs \qquad \widetilde{S} \notin \widetilde{Cs} \stackrel{(i)}{\cong} \underbrace{S} \notin \widetilde{Cs} \\ \hline 0 \quad \widetilde{CS} \quad is a partition of [n] \\ (i) \quad As \quad s.f. core (G); it must be efficient! (alled an outcome in lecture slides!) \\ \hline (i) \quad By assumption \\ \hline (i) \quad By definition of arce \quad x(S) \geq v(s) \quad \forall \quad S \subseteq [n] \\ \hline (i) \quad But how \quad T < T ? Contradiction !$$

5. Suppose an outcome (CS, \mathbf{x}) is in the core of G = (N, v). Show that for every other coalition structure CS' with $\sum_{C \in CS} v(C) = \sum_{C' \in CS'} v(C')$ there is a payoff vector \mathbf{y} such that (CS', \mathbf{y}) is in the core of G.

Set
$$y = x$$
.
Wort to show that $x(S) = v(S)$ $\forall S \in CS'$ [free (C^{g}, x) is a
volid outcome
 $\sum x(S')^{(1)} = \sum x_{i} \stackrel{@}{=} \sum v(C) \stackrel{@}{=} \sum v(S) \times x_{i}$
 $S' \in CS'$ $i \in CT'$ $S \in CS$ $S \in CS'$
 $i \in CT'$ $S \in CS$ $S \in CS'$
 $i \in CS'$ $i \in CT'$ $S \in CS'$ $S \in CS'$ S^{1}
 $i \in CS, x)$ is a volid outcome Assume $\exists S \in CS'$ S^{1}
 $i \in CS'$ $i \in CS'$ $S \in CS'$ S^{1}
 $i \in CS'$ $S = V(S) \times V(S)$
 $i \in CS' = X(S) \times V(S)$
 $i \in CS' = X(S) \times X(S)$
 $S \in CS'$
 $S \in CS'$ $S \in CS'$
 $S \in CS'$ $S \in CS'$

This contradicts **

6. In class, we proved that a superadditive simple game has a non-empty core if and only if it has a veto player. We also claimed that the following corollary holds: a payoff vector (x_1, \ldots, x_n) is in the core of a superadditive simple game G = (N, v) if and only if $x_i = 0$ for each player *i* who is not a veto player. Prove this corollary.

Wont to prove 'x E corre (G) (=> x:=0 if i not veto
ployer.
> Assume x E corre (G).
Let : be a non veto ployer. Then
$$\exists 3 \subseteq N_{i}$$
 s.t $v(3) = 1$

As
$$V(S) = 1$$
; by monotoncity $V(N) = 1$. But as $x \in corre(G)$
 $x(N) = 1$.

$$x(N) = \sum_{i \in S} x(i) + \sum_{i \notin S} x(i)$$

$$i \notin S$$

$$1 = 1$$

$$\therefore xi = 0 \text{ as sum is } 0$$

$$as i \notin S$$

Assume x;=0 V: non veto. Wont to show x(3) > V(2) YSE[A]

E

• If S is a losing coolifion than V(3) = 0; so $x(2) \ge V(3)$ as $x(3) \in \{0, 1\}$

• Let g is be a winning coefficient with all vets players. (only way to win is have all vets players) As x(N) = 1 $x(N) = x(g) + x(g^c)$ 1 = 1 O by assumption $= v(g) \ge v(g)$. 7. Consider a 3-player simple game where a coalition is winning if and only if it contains at least 2 players. Can this game be represented as an induced subgraph game? Assume that self-loops are allowed.

For every $n \ge 1$, construct an *n*-player convex simple game where every two players are symmetric. How many such games are there for each value of n? Justify your answer.

There are 2 gomes for every n. G_n^{\perp} : All $S \subseteq N : v(S) = 0$ G_n^{\perp} : All $S \subseteq N : v(S) = 0$ G_n^{\perp} : All $S \subseteq N : v(S) = 0$ v(N) = 1The only may to score a point is be in the grand coalition. So once again symmetric + convex! Claim: There are no more symmetric simple convex game! Assume w/log n>1 Let C be the smallest winning coalition of a game G that is not G'n& on Pick j& Condife C. By symmetry, (CIZiZ) Ufjj is also a winning coalition. As C is the smallest winning coefficien V (CUZIY) = V (C) // monotoneity But CNZiz - is not winning ! // CNZiz C C And C is smallest

j posituely impacts CNZiJ but g does not impact C.

Cis bigger than Chzig. Breaks convexity! which requires