1. Prove that deciding if a given player in a weighted voting game is a null player in coNP-complete.

We are given a weighted voting game $G=\left[\left(w_{1}, \ldots w_{n}\right), k\right]$ and some $i \in[n]$ and asked to show that the olecision problem
is i a dummy player in G \#
is cO-NP complete.

Alternatively, we could consider the complement of this decision problem
\#\#
is i NOT a dumony player in G and show that this decision problem is NP complete.

Player i is NOT dummy if $\exists S \subseteq[n] \backslash\{i\}$

$$
\sum_{x \in S}^{3 \text { is } w_{x} \operatorname{sing} q_{L}} \sum_{x \in S} w_{x}+w_{i} \text { —* }
$$

SU\{i\} ~ i s ~ w i n n i n g ~
If someone goure us S (think of S as a witness); then we ass check $*$ in linear time in n. so we have a short proof. \#\# in NP.

To show \#\# is NP complete we need to show that any problem $x \in N P$, $k a r p$ reduces to \#\#.
We show that PARTITION $\frac{\mathcal{L}^{k}}{k}$ CharD Racking if i is NDT dummy in G. (known to be NP complete)

Given an instance of PARTITION

$$
\left(a_{1} \ldots a_{n}\right) \text { and parameter } K
$$

we set up a weighted voting gone

$$
\begin{aligned}
& w_{i}=a_{i} \quad \forall i \in[n] \\
& w_{n+1}=1
\end{aligned}
$$

and set the quota of the gore to be $k \pm 1$

This transformation is clearly poly (n) -
Now to finish the reduction we wart to show
$\left(a_{1}, \ldots a_{n}, k\right) \in$ PARTITION \Leftrightarrow Player $n+1$ not dory in x_{p} transformed game.
\Rightarrow Assume

$$
x_{p} \in \text { PARTITION }
$$

$\exists S C N$ st
Then

\Leftarrow Assume $n+1$ is not dummy
Then $\exists S C N$ st
S is losing but $\mathcal{S} \cup\{n+1\}$ is wining

$$
\text { This is a partition } \sum_{x \in s} a x=k
$$

$\therefore \sum_{x \in s} a x=k$ as adding 1 to it maven winning but removing of makes it losing.
2. The Vertex Cover problem is given by an undirected graph $G=(V, E)$ and a positive integer k. A pair (G, k) is a yes-instance if G admits a vertex cover of size k, i.e., a subset of vertices $S \subseteq V$ with $|S|=k$ such that for each edge $\{u, v\} \in E$ we have $u \in S$ or $v \in S$.
Consider the following mapping from an instance of VERTEX COVER to a vector weighted voting game. Given an instance with n vertices and m edges, we construct a game with n players $1, \ldots, n$ that is a conjunction of m weighted voting games, one per edge. For each edge $e=\{u, v\}$ the game G^{e} has quota 1; the weights of players u and v are 1 , and the weights of all other players are 0 . Use this construction to prove NP-hardness of the following decision problem (you may need to modify the basic construction to do this, e.g., by adding extra games or changing weights).
Given a vector weighted voting game that is a conjunction of t weighted voting games $G^{1} \wedge \cdots \wedge G^{t}$, is the game G^{t} relevant, i.e., is it the case that $G^{1} \wedge \cdots \wedge G^{t-1}$ and $G^{1} \wedge \cdots \wedge G^{t}$ do not have the same set of winning coalitions?
conjuctive notation:
G_{i} : weighted
Let $G=G_{1} \wedge G_{2} \wedge \ldots G_{t}$ voting gave.
be a game described by the conjuction of t games.
By conjunction, I mean, if S wins in $G \Rightarrow S$ wins for ALL G_{i}.
You are told to show that the following

We are giver

decision problem is NP-HARD.

Gives $G=G_{1} \lambda \ldots G_{t}$ is G_{t} relevant?
"A game is relevant if adding G_{t} to G charges the set of winning coalitions"

with $|V|$ players where any coalition that contains \underline{u} or \underline{v} wins. ie quota $=1$

Let $\tilde{G}=C^{e_{1}} \Lambda \ldots C^{e_{m}}$
clearly this transformation is poly (n).

Now define G^{*} as a weighted voting game with $|V|$ players where $\omega_{i}=1 \quad \forall i \in[n]$; and quota $k+1$ Want to show if
from the vertex cover prob

$$
(G r, k) \in \text { Vertex Cover } \Leftrightarrow \quad G_{\text {to }}^{*} \underset{G}{\widetilde{G}} \text { is relevant }
$$

\Rightarrow Let S be a vertex cover of $G r$ of size k.
Then the coalition 8 loses in G^{*} as the quote is $k+1$ and $|S|=k$.

But 8 wins \widetilde{G} as 8 has a rode that touches every edge (by vertex cover property); so for every game C^{e} if will win as $u \in S$ st $e=(*, u)$ or $(u, *)$.
$\Leftarrow G^{*}$ is relevant. ヨ coalition S st. S is winning in \widetilde{G} but not G^{*}. [By relevance]
For S to win \widetilde{G}; it must be a cover of G of sized molt k. \downarrow as it's losing in G
3. Consider two simple games $G^{1}=\left(A, v^{1}\right)$ and $G^{2}=\left(A, v^{2}\right)$ with the same set of players A. Suppose that a player $i \in A$ is not a null player in both games. Can we conclude that i is not a null player in the game $G^{\cap}=\left(A, v^{\cap}\right)$, with the characteristic function v^{\cap} given by $v^{\cap}(C)=\min \left\{v^{1}(C), v^{2}(C)\right\}$? What about the game $G^{\cup}=\left(A, v^{\cup}\right)$, where v^{\cup} is given by $v^{\cup}(C)=\max \left\{v^{1}(C), v^{2}(C)\right\}$?

A few ways to tackle this. I'rn writing what I think is the simplest.

$$
A=\{1,2,3\}
$$

	\varnothing	$\{1\}$	$\{2\}$	$\{3\}$	$\{1,2\}$	$\{1,3\}$	$\{2,3\}$	$\{1,2,3\}$
V^{1}	0	0	0	0	1	0	1	1
V^{2}	0	0	0	0	0	1	1	1
V^{n}	0	0	0	0	0	0	1	1

- Adding 1 to $\{2\}$ charges value. 1 is Not Dummy inv 1
-: Adding 1 to $\{3\} " 1$ ". 1 is No DuMMY in v^{2}.

	\varnothing	$\{1\}$	$\{2\}$	$\{3\}$	$\{1,2\}$	$\{1,3\}$	$\{2,3\}$	$\{1,2,3\}$
V^{1}	0	0	1	0	1	1	1	1
v^{2}	0	0	0	1	1	1	1	1
v^{n}	0	0	0	0	0	0	1	1

- Adding 1 to $\{3\}$ charges value 1 is Not Dummy in y 1
-: Adding 1 to $\{2\}$ ". 1 is NOT DUMMY in v^{2}.

4. Prove that any outcome in the core maximizes the social welfare, i.e., for any coalitional game G it holds that if $(C S, \mathbf{x})$ is in the core of $G=(N, v)$ then for any coalition structure $C S^{\prime}$ for G we have $\sum_{C \in C S} v(C) \geq \sum_{C^{\prime} \in C S^{\prime}} v\left(C^{\prime}\right)$.

Assume that the statement is false.

$$
\begin{aligned}
& \exists \widetilde{c s} s+t \sum_{s \in c s} v(s)<\sum_{\tilde{s} \in \tilde{c s}} V(\tilde{s}) \\
& \gamma=\sum_{\widetilde{s} \in \widetilde{c s}} x(\widetilde{s}) \stackrel{(1)}{=} \sum_{i \in[n]} x_{i} \stackrel{(2)}{=} \sum_{s \in c s} v(s)<\sum_{\tilde{s} \in \tilde{s}} v(\tilde{s}) \leq \sum_{\tilde{s} \in \tilde{c}} x(\tilde{s})
\end{aligned}
$$

(1) \tilde{c} s is a partition of $[n]$
(2) As se \in core $\left(G_{1}\right)$; it must be efficient! Called an outcome in lecture slides)
(3) By assumption
(4) By definition of core $x(s) \geq v(s) \forall s \subseteq[n]$ But how $\gamma<\gamma$? Contradiction?
5. Suppose an outcome $(C S, \mathbf{x})$ is in the core of $G=(N, v)$. Show that for every other coalition structure $C S^{\prime}$ with $\sum_{C \in C S} v(C)=\sum_{C^{\prime} \in C S^{\prime}} v\left(C^{\prime}\right)$ there is a payoff vector \mathbf{y} such that $\left(C S^{\prime}, \mathbf{y}\right)$ is in the core of G.

Set $y=x$.
Kant to show that $x(S)=V(S) \quad \forall S \in C s^{\prime}\left[\begin{array}{l}\text { Then }\left(C s^{\prime}, x\right) \text { is a } \\ \text { valid outcome }\end{array}\right.$

$$
\sum_{s^{\prime} \in c s^{\prime}} x\left(s^{\prime}\right)=\sum_{i \in[n]} x_{i} \stackrel{(2)}{=} \sum_{s \in c s} v(c) \stackrel{(3)}{=} \sum_{s \in c s^{\prime}} v(s) * *
$$

Note: Already home $x(s) \geq V(s) \quad \forall s \subseteq[0]$
so just is sough?
(1) $C S^{\prime}$ is a partition of [n]
(2) $(C S, x)$ is a valid outcome Assume $\exists \tilde{\rho} \in C S^{1}$. st
(3) Problem statement

$$
\begin{aligned}
& x(\tilde{s})>v(\tilde{s}) \\
\therefore & \sum_{s^{\prime} \in C s^{\prime}} x(\dot{s})>\sum_{s \in C s^{\prime}} v(s)
\end{aligned}
$$

This contradicts $* *$
6. In class, we proved that a superadditive simple game has a non-empty core if and only if it has a veto player. We also claimed that the following corollary holds: a payoff vector $\left(x_{1}, \ldots, x_{n}\right)$ is in the core of a superadditive simple game $G=(N, v)$ if and only if $x_{i}=0$ for each player i who is not a veto player. Prove this corollary.

Want to prove $\cdot \vec{x} \in \operatorname{core}(G) \Leftrightarrow x_{i}=0$ if in ot veto ploys.
\Rightarrow Assume $\vec{x} \in \operatorname{core}(G)$.
Notation: $N_{-i}=N \backslash\{i\}$

Let i be a non veto player. Then $\exists S \subseteq N_{-i}$ st $v(s)=1$

As $V(S)=1$; by monotorcity $V(N)=1$. But as $x \in$ ore (G)

$$
x(N)=1 .
$$

$$
\begin{aligned}
& x(N)=\sum_{j \in s} x(j)+\sum_{j \neq s} x(j) \\
& 1=1 \text { must be } 0 \\
& \therefore \quad x_{i}=0 \text { as sum is } 0 \\
& \text { asiffs }
\end{aligned}
$$

\Leftarrow Assume $x_{i}=0 \quad \forall$ in on veto.
Wart to show $x(s) \geqslant V(s) \quad \forall s \subseteq[n]$

- If B is a losing coalition then

$$
v(s)=0 \text {; so } x(s) \geq v(s) \text { as } x(s) \in\{0,1\}
$$

- Let S is be a winning coalition with all veto players. (only way to win is have all veto player)

As $x(N)=1$

7. Consider a 3-player simple game where a coalition is winning if and only if it contains at least 2 players. Can this game be represented as an induced subgraph game? Assume that self-loops are allowed.

But now $V(\{A, B, C\})=3$
Not allowed!
if I mote

$$
v\{A, B, C\}=1
$$

Then $v(\{A, B\})=1 / 3$
rot allowed !

For every $n \geq 1$, construct an n-player convex simple game where every two players are symmetric. How many such games are there for each value of n ? Justify your answer.

There are 2 games for every n.

$$
\left.\begin{aligned}
& G_{n}^{1}: \text { All } S \subseteq N: V(S)=0 \left\lvert\, \begin{array}{l}
\text { Easy to stow the game is symmetric } \\
\text { and convex. } \\
\text { All valuations are } 0 .
\end{array}\right. \\
& G_{n}^{2}: \text { All } S \subset N \quad V(S)=0 \\
& V(N)=1
\end{aligned} \right\rvert\, \begin{aligned}
& \text { The only was to score a point is be in the } \\
& \text { grand coalition. }
\end{aligned}
$$

So once again symmetric + convex!

Claim: There are no more symmetric simple convex game!
Assume $w / \log n>1$

Let C be the smallest winning coalition of a game G that is not $G_{n}^{\prime} \diamond G_{n}^{2}$ Pick $j \notin C$ and $i \in C$.
By symmetry, $(C \backslash\{i\}) \cup\{j\}$ is do a winning coalition.

As C is the smallest winning coalition

$$
V(c \cup\{j\})=V(c) / / \text { monotonicity }
$$

But $C \backslash\{i\}$ - is not winning! $\| C \backslash\{i\} \subset \subset$ [And C is smollest.in] winning
j positurely impacts $C \backslash\{i\}$ but j does not impact C.
C is bigger than $C \backslash\{i\}$. Breaks convexity! which requires

$$
\begin{aligned}
V(S \cup\{j\})-V(s) \geq V\left(s^{\prime} \cup\left\{j^{\prime}\right\}\right)-V\left(s^{\prime}\right) & \forall j \in[n] \\
& \text { if } s^{\prime} \subseteq s
\end{aligned}
$$

